

F O R U M N O K I A

Flash Lite 1.1: Sound for Nokia S60 and
Series 40 Devices

Version 1.0; December 20, 2007

Flash Lite

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 2

Copyright © 2007 Nokia Corporation. All rights reserved.

Nokia and Forum Nokia are trademarks or registered trademarks of Nokia Corporation. Other product and
company names mentioned herein may be trademarks or trade names of their respective owners.

Disclaimer

The information in this document is provided “as is,” with no warranties whatsoever, including any warranty of
merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal,
specification, or sample. This document is provided for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to
implementation of information presented in this document. Nokia Corporation does not warrant or represent
that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this document at any time, without notice.

License

A license is hereby granted to download and print a copy of this document for personal use only. No other license
to any other intellectual property rights is granted herein.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 3

Contents

1 Introduction.. 6
2 Flash Lite 1.1 device sound ... 7

2.1 Understanding the MIDI format ..7
2.2 Limitations of MIDI...8
2.3 Using MIDI for music..8

2.3.1 Guidelines for MIDI music..8
2.3.2 Guidelines for MIDI compatibility ...8

2.4 Using MIDI for sound effects...9
2.4.1 Common MIDI sequencing techniques ...9

2.5 Looping MIDI files..10
2.6 Testing MIDI sounds ...10

2.6.1 S60 devices from Nokia...10
2.6.2 Series 40 devices from Nokia ..10

2.7 Integrating MIDI with Flash Lite content...11
2.7.1 Embedding MIDI within SWF...11
2.7.2 Controlling MIDI playback with ActionScript..13
2.7.3 Synchronizing MIDI and animation...13
2.7.4 Guidelines for synchronizing MIDI and animation ..14

3 Flash Lite 1.1 native audio ..15
3.1 Implementing native audio with the Flash IDE...15

3.1.1 Sound menu..16
3.1.2 Sync options menu...16
3.1.3 Loop setting box ...17
3.1.4 Effect menu ...18
3.1.5 Sound edit window..18

3.2 Controlling native audio playback with ActionScript ..18
3.3 Using sound compression ..20

3.3.1 MP3 encoder ...21
3.3.2 ADPCM encoder ..21
3.3.3 Sound reformatting ...22

3.4 Guidelines for preparing native audio content...22
3.5 Using native audio and device sound together ..23
3.6 Comparing device sound and native audio..23

4 Terms and abbreviations...24
Appendix A Getting device volume ..25
Appendix B Using sound capability properties...26

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 4

Appendix C Launching the sound player application..27
About the author...28
Evaluate this resource..28

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 5

Change history

December 20, 2007 Version 1.0 Initial document release

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 6

1 Introduction

Flash Lite from Adobe is a mobile profile of the Flash runtime intended for mobile and handheld
devices. Flash Lite can be an effective mobile platform for casual games, entertainment content, and
mobile multimedia applications.

Nokia has licensed Flash Lite 1.1 from Adobe for its devices based on S60 3rd Edition and Series 40 3rd
Edition, Feature Pack 1. Flash Lite 1.1 is based on the Flash 4 player for PC and includes features for
device interaction and mobile-specific applications.

An important difference between Flash Lite for mobile devices and Flash for the PC environment is
that Flash Lite supports two sound playback systems. Flash Lite “native” audio has capabilities similar
to the PC player. Flash Lite “device” sound is a new feature that enables Flash Lite to play sound
content in formats supported by the device operating system.

Flash Lite 1.1 for S60 devices from Nokia supports both native audio and the MIDI sound format using
the device sound implementation. Flash Lite 1.1 for Series 40 devices from Nokia supports only the
MIDI sound format using the device sound implementation.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 7

2 Flash Lite 1.1 device sound

The device sound implementation enables Flash Lite to play sound formats that are supported by a
device operating system. In the Flash Lite 1.1 device sound implementation, Flash Lite does not play a
device sound itself. Instead, it passes a copy of a device sound stored within a currently loaded SWF
file to the device operating system for playback. Flash Lite 1.1 for S60 and Series 40 devices from Nokia
supports playback of device sounds in the MIDI (musical instrument digital interface) format.

Figure 1: Flash Lite 1.1 device sound implementation

Note that Flash Lite 1.1 cannot load MIDI files directly. It is limited to playing MIDI files that are
embedded within SWF files; however, for modularity, Flash Lite can dynamically load external SWF
files containing MIDI files.

Tip: When creating Flash Lite 1.1 content, you should consider using the MIDI format for sound
because it is the only sound format that all Nokia Flash Lite-enabled devices support.

2.1 Understanding the MIDI format

Unlike digitized audio formats such as WAV or MP3, a MIDI file contains music performance data such
as the pitch, duration, time, volume, and timbre of each note in the composition. A device plays a MIDI
file through a sequencer that sends MIDI data to a synthesizer to generate sound using its built-in
sound banks.

Because MIDI represents sound as data instead of digitized audio, a MIDI file can be very small in file
size compared to a MP3 recording, and MIDI playback can be less CPU-intensive than decoding a MP3
file. These two advantages make MIDI an effective sound format for mobile content because devices
tend to have limited CPU and RAM resources and cellular networks have limited bandwidth for
delivering content over the air.

Most mobile devices on the market including S60 and Series 40 devices from Nokia have GM (General
MIDI specification) compliant synthesizers for playing MIDI files. The GM specification requires that a
compliant synthesizer have an instrument bank of 128 common instruments and a percussion bank of
47 standard percussion instruments.

Refer to the MIDI And True Tones In Nokia Devices document for a complete listing of the instruments
in the GM banks.

http://www.forum.nokia.com/info/sw.nokia.com/id/aadd538a-f61c-49e3-8a7a-4de84b4edf7e/MIDI_And_True_Tones_In_Nokia_Devices_v2_4_en.pdf.html

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 8

2.2 Limitations of MIDI

A limitation of MIDI is that it can sound differently on different devices. The sound of a MIDI file
depends on the instrument timbres in the GM sound banks of a given device synthesizer. One device
synthesizer may have a different sounding flute timbre than another so that the same flute music in a
MIDI file sounds differently on different devices. You should test MIDI files on target devices to make
sure that a given MIDI timbre will work effectively in the context of Flash Lite content. There can be
noticeable variation in the timbres of sound banks in Nokia devices. You should test your MIDI files on
a variety of Nokia devices to ensure that MIDI plays in a way that is acceptable for a Flash Lite game or
application.

Another issue is that the MIDI specification does not define a standard means for seamless looping.
For Flash Lite 1.1 content, it is possible to restart a MIDI file with a timeline loop to create a repeating
sound, though this inserts a pause between repeats. This technique is most appropriate for ambient
backing tracks that do not require rhythmically precise loops.

MIDI is a data only format, and cannot contain recorded audio or vocal sounds. It is not possible to
convert WAV and MP3 recordings directly into the MIDI format, nor is it possible to include custom
WAV samples in a GM sound bank. MIDI produces sound and music based on the 175 timbres available
in the built-in instrument and percussion banks of a device synthesizer.

A “MIDI browser 2” application for auditioning each of the 175 sounds of a Flash Lite-enabled Nokia
device synthesizer is included in the same package as this document.

Note: Because MIDI is a data only format, it is not possible to convert recorded audio formats like
WAV or MP3 into MIDI, nor is it possible to edit MIDI in typical audio editing software. You should use a
MIDI sequencer to edit MIDI files.

2.3 Using MIDI for music

In many cases you can use precomposed MIDI files or work with a musician to create MIDI music. It is
important to make MIDI files that sound clearly and project loudly through the external speaker of a
device. Another important issue is to create MIDI files that are compatible with a device synthesizer
and optimized for CPU performance.

2.3.1 Guidelines for MIDI music

Normalize the volume of a MIDI file to maximize sound output. Normalizing MIDI requires changing
the velocity value (a MIDI parameter for a note’s volume) for all the notes in the MIDI file. Many MIDI
creation software have a convenient means to normalize MIDI that involves an algorithm to find the
loudest note, shift its velocity to full volume, and then shift the remaining note velocities accordingly.

Select ranges for instrument sounds that project clearly. Some instruments project more loudly than
others, and may project more loudly within different ranges of the instrument. If a MIDI file does not
project loudly after normalizing, you may need to transpose the key of the music or shift the primary
instrumental part to a different octave for better projection through the speaker.

Avoid using low frequency bass sounds. Low frequencies and low-pitched notes may not project well
through the small external speakers of a mobile device.

2.3.2 Guidelines for MIDI compatibility

Use MIDI files with 65-note polyphony or less. Polyphony is the number of notes a synthesizer can play
simultaneously. S60 3rd Edition and Series 40 3rd Edition devices from Nokia support 65-note
polyphony at the maximum. A Nokia device will perform the MIDI file incompletely if the file contains

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 9

more than 65-note simultaneous polyphony. In most cases, 65-note polyphony is more than sufficient
for MIDI music. Consider using MIDI music with fewer simultaneous notes, which can be more CPU-
efficient for a synthesizer to play.

Use MIDI files with SP-MIDI channel priority messages. The SP-MIDI (scalable polyphony MIDI)
specification defines a set of rules known as channel priority messages. A composer adds these rules
to a MIDI file to prioritize musical parts so that the device synthesizer plays the parts most essential to
the composition if there are not enough CPU resources to manage all parts. This is an issue if the MIDI
file exceeds the polyphony of a device, a device has a low battery charge, or is executing
CPU-demanding animation and sound content. All Nokia devices are SP-MIDI-compliant.

Use MIDI format 0. Format 0 is a simpler, more efficient format for the device synthesizer to parse than
format 1. Format 1 is useful for preserving MIDI track organization for editing purposes. Converting
from format 1 to format 0 does not change the sound of a MIDI file.

2.4 Using MIDI for sound effects

Single-note MIDI files that use instruments from the percussion bank can be effective for simple user
interface sound effects like button press sounds. For more advanced effects, you can design new
sounds based on the 175 built-in timbres of the device synthesizer and manipulate these using MIDI
sequencing techniques and MIDI controllers. MIDI controllers are parameters for altering the sound of
a note or a group of notes.

The device synthesizer for S60 and Series 40 devices from Nokia supports the following common MIDI
controllers:

• Volume – Sets the volume for a MIDI channel.

• Pan – Sets the pan for a MIDI channel, for devices supporting stereo output.

• Pitch Bend – Changes the pitch of a note or group of notes, defaulting to a range of 2 semitones
above and below a note.

• RPN – Parameter for altering the range of pitch bend.

• Modulation – A rapid change in pitch also known as vibrato.

• Master volume – Controls the volume of all tracks.

Note: Nokia devices do not support pitch bend controller messages for sounds in the GM percussion
bank.

2.4.1 Common MIDI sequencing techniques

Create an echo effect by copying music from one MIDI track into another, offsetting its time position
and lowering its volume.

Create a phaser/chorus like effect by copying music from one MIDI track into another, slightly
offsetting its time, and detune the copy from the original by applying pitch bend and modulation. Use
the volume controller to control the “wet/dry” mix between the effect track and its original track.

Use the volume controller as a volume envelope editor to hide the attack of a built-in sound to create
a new sound. The human ear tends to identify an instrument by its attack. Hiding the attack of an
instrument can significantly change its character. For example, it is possible to create a “whoosh” like
effect by using the volume controller to hide the attack of and fade in a cymbal sound.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 10

2.5 Looping MIDI files

The MIDI specification does not define a standard means for looping, nor does Flash Lite 1.1 have a
means to seamlessly loop MIDI files. It is possible to create a repeating MIDI sound using a timeline
loop; however, this introduces a noticeable delay between the end of the loop and its beginning.

To use a timeline loop to repeatedly play a MIDI file, you can place the MIDI file in the first frame of a
movie clip and add frames to the movie clip timeline so that the duration of the movie clip is one
frame longer than the MIDI file. When Flash Lite reaches the end of the movie clip, it will automatically
restart at the first frame and replay the MIDI sound.

It is important that the movie clip duration be longer than the MIDI file so that Flash Lite does not
prematurely stop the MIDI file before restarting again. Flash Lite will continuously repeat the timeline
loop and replay the MIDI sound until explicitly stopped by ActionScript. To stop the sound in this case,
you must stop the playback of both the movie clip timeline loop, using the stop() command, and
the MIDI sound, using the stopAllSounds() command.

This technique is most effective for ambient tracks that do not need rhythmically precise looping.

A “demo MIDI” application that demonstrates various MIDI sound effects and a repeating MIDI file is
included in the same package as this document. The package also includes 175 one-note MIDI files in
the MIDI browse folder.

2.6 Testing MIDI sounds

You should test MIDI sounds directly on a device to verify that it plays as intended before integrating it
with Flash Lite. The main concern is that MIDI timbres and music need to project well through the
external speaker of a device. You should test at loud and soft volumes, through headphones, and in
different locations to determine how it sounds against competing sounds from the environment.

Nokia SDK emulators for both Series 40 and S60 devices contain the synthesizer and sound banks
installed on the corresponding devices. You can audition MIDI sounds by loading these sounds into the
emulator.

Nokia also provides the Nokia Audio Suite 2.0 VST plug-in for Steinberg Nuendo and Steinberg Cubase
3.0+ MIDI sequencers. This plug-in contains the sound banks of many types of Nokia devices.

You can audition MIDI files directly in the desktop environment using Nokia SDK device emulators or
the Nokia Audio Suite to emulate the sound of Nokia devices. Visit www.forum.nokia.com for more
information about the Nokia SDK device emulators and the Audio Suite VST plug-in.

2.6.1 S60 devices from Nokia

Install a MIDI file in the Simple folder within the Sounds folder. On the device, select the MIDI file from
the Sound Clips category under Gallery.

2.6.2 Series 40 devices from Nokia

Transfer the MIDI file to the Ringing Tones folder inside the Tones folder. On the device, play the MIDI
file from the Ringing Tones folder within the Tones folder of the Gallery.

http://www.forum.nokia.com/

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 11

2.7 Integrating MIDI with Flash Lite content

You can use MIDI sounds as backing music and sound effects in a linear animation, or as interactive
sounds that play in response to user interaction with a game or application. Flash Lite 1.1 can only
play MIDI files that are embedded within a SWF file. You can use ActionScript to control playback of an
embedded MIDI file and can also synchronize MIDI sound and animation.

2.7.1 Embedding MIDI within SWF

The Flash IDE does not support MIDI sounds directly. Instead, you first need to import a WAV, MP3, or
AIFF sound into a FLA to act as a placeholder or “proxy” sound that the IDE replaces with a MIDI file
during the SWF testing or publishing process. Each MIDI file must have a corresponding proxy sound in
the FLA library.

Embedding a MIDI file in a Flash Lite 1.1 SWF is a four-step process:

1. Import a proxy sound file in WAV, AIFF, or MP3 format into the FLA library. Name the sound asset
according to its corresponding MIDI file.

Figure 2: FLA library

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 12

2. From the Library window, open the sound properties window for a proxy sound asset and browse
to the location of the corresponding MIDI sound. This step assigns the selected MIDI file to the
proxy sound.

Figure 3: Sound properties window

3. Place the proxy sound asset from the library in the frame where the MIDI sound should play. The
Flash IDE displays wave forms for proxy sounds in green and native audio sounds in blue.

Figure 4: Proxy sounds and native audio sounds

4. Test or publish the Flash Lite application. The IDE replaces all instances of the proxy sound with
the MIDI sound, embedding it within the resulting SWF.

After making changes to a MIDI file, you can retest or republish the FLA to update MIDI sounds in a
SWF.

None of the sound settings in the Flash IDE — such as the Sound Inspector, Sound Edit window, or
Sound Properties window — apply to device sounds.

The Flash Lite emulator for Adobe Device Central and Flash 8 IDE plays MIDI using the QuickTime
synthesizer. The instrument timbres of the QuickTime synthesizer sound differently than those in
Nokia devices and some aspects of MIDI may not play correctly through the QuickTime synthesizer.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 13

You should test the SWF containing MIDI sounds in the Nokia SDK device emulator, which plays MIDI
using the same or similar MIDI synthesizer timbres as those installed on Nokia devices. Ultimately, it is
best to test Flash Lite SWF containing MIDI sounds directly on the target devices.

Tip: For projects involving MIDI only, use a short, silent MP3 proxy sound. This sound can be
reimported and renamed in the library without the need to create a unique sound for each MIDI file. A
short, silent MP3 8 kbps compressed sound also reduces the size of the FLA.

2.7.2 Controlling MIDI playback with ActionScript

Flash Lite 1.1 for Nokia devices can start and stop MIDI sounds, though only one MIDI sound may play
at a time. Flash Lite 1.1 does not have a dedicated command for starting sound. Instead, ActionScript
is used to move the Flash Lite movie clip playhead to a frame containing a sound to start the sound,
and the stopAllSounds() command is called to stop the sound.

To facilitate control over individual sounds, sound-only movie clips are often created as containers for
sounds. Typically, a sound-only movie clip has a stop() command in the first frame to prevent the
Flash Lite player from automatically playing the sound at run time, a MIDI sound in frame 2 with a
label such as “sound”, and a gotoAndStop(1) command in frame 3 to reset the movie clip to frame
1, after playing sound. Resetting the movie clip to frame 1 makes the timeline ready for subsequent
sound playback.

In the code example below, pressing the 1 key causes Flash Lite to play a sound by moving the
playhead to the frame labeled “sound” in a sound-only movie clip named “soundmc”. Pressing the 2
key calls the stopAllSounds() command, which causes Flash Lite to stop the MIDI sound.

// play the frame labeled “sound”, containing a MIDI sound
on(keyPress "1") {
 tellTarget("soundmc"){gotoAndPlay("sound");}
}

// stop MIDI sounds
on(keyPress "2") {
 stopAllSounds();
}

Refer to the “Control Sound” SWF and FLA (included in the same package as this document) for an
example FLA demonstrating interactive MIDI sound control. Press the 1 key to start or restart sound
and the 2 key to stop sound.

2.7.3 Synchronizing MIDI and animation

Flash Lite 1.1 has no built-in means to resynchronize MIDI sound and animation, but it is possible to
achieve a form of synchronization by starting both animation and MIDI sound at the same time.

Flash Lite 1.1 briefly pauses animation and ActionScript when starting a MIDI sound. This may have an
impact on the flow of animation or gameplay. A second issue is that, without a lock-to-frame
capability, MIDI sound and animation playing at the same time can drift out of synch. MIDI always
plays at a constant rate; however, the Flash Lite frame rate can vary depending on the time it takes to
render a graphic or execute ActionScript for a given frame.

Achieving effective synchronization between MIDI and Flash Lite 1.1 animation requires that Flash Lite
1.1 play sound frequently enough to resynchronize sound and animation, but not too frequently to
disrupt the flow of animation with many pauses.

You can use the “Sound Interrupt” SWF, which is included in the same package as this document, to
determine the duration of the pause that Flash Lite 1.1 introduces when playing a MIDI sound. This

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 14

application uses a looping movie clip to play a sound every 20 frames and displays elapsed time
between frames including the pause after playing MIDI sound or a native audio sound.

2.7.4 Guidelines for synchronizing MIDI and animation

Verify that the duration and speed at which Flash Lite 1.1 renders an animation is the same or similar
on all target devices. Significant variation in the time for Flash Lite 1.1 to render animation on
different device models may prevent reliable synchronization between sound and animation across
devices.

Include sequences of sounds or music within a single MIDI file instead of distributing individual
sounds as separate MIDI files throughout a timeline. This technique reduces the number of MIDI files
Flash Lite plays, consequently reducing the number of pauses that Flash Lite may introduce during
animation.

Use short sound and music sequences of 10 seconds or less. Shorter sequences reduce the possibility
that animation and sound will loose synch over time.

Divide the animation into sections based on natural pause points. Start the MIDI sound at the
beginning of a section to minimize interruption in the animation. The delay caused by starting the
MIDI sound will be less noticeable during natural pauses in the animation.

Avoid starting MIDI sounds in the same frame as an arrival point in an animation because the pause
introduced by starting MIDI may interrupt the flow of animation at an important moment. To achieve
this type of synchronization, start a MIDI file containing the desired arrival point sound effect at a prior
natural pause point in the animation. Pad the beginning of the MIDI file with a duration of silence
equal to the number of frames between the natural pause point and the arrival point of the
animation.

Test sound and animation synchronization in the Nokia SDK device emulator. The emulator provides a
close rendition of both the MIDI sound timbres on Nokia devices and the synchronization behavior
between Flash animation and MIDI sound as it would play on a Nokia device.

For an example of synchronizing MIDI with a long-form animation, see the “Gleek animation” SWF for
Flash Lite 1.1 that is included in the same package as this document.

Note: To maintain backlighting during the animation when playing through Flash Lite 1.1,
periodically press any key, except 1 or “enter”.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 15

3 Flash Lite 1.1 native audio

In addition to supporting MIDI device sound, Flash Lite 1.1 for S60 devices from Nokia also includes
native audio capabilities. In the native audio implementation, Flash Lite 1.1 plays sound through its
built-in audio subsystem, which is comparable to the audio features of the PC Flash 4 player.

Figure 5: Flash Lite 1.1 native audio implementation

Flash Lite 1.1 for S60 devices from Nokia cannot play MIDI device sound and native audio
simultaneously, but it can alternate between the two sound systems.

Flash Lite 1.1 native audio capabilities include a software MP3 decoder, seamless sound looping, built-
in sound and animation resynchronization, and layering of 4 to 8 sounds depending on the processing
power of a device.

Note: Unlike the PC Flash player, Flash Lite 1.1 for S60 devices from Nokia does not progressively load
sounds. It must load a sound completely before playing the sound.

The Flash Lite 1.1 native audio implementation supports digital audio formats such as WAV, AIFF, and
MP3 that are stored within SWF files. You should be cautious with digital audio content because large
file size audio assets within a SWF may lead to memory management issues and exceed OTA (over the
air) file size limitations. Also, using the MP3 decoder or layering sounds in combination with executing
animation and ActionScript can be demanding on CPU and RAM usage, leading to unwanted player
error messages.

Flash Lite 1.1 cannot load audio files directly. Instead, you need to embed WAV, AIFF, or MP3 sounds
within a SWF. For modularity, Flash Lite 1.1 can load and unload SWF files containing audio assets at
run time to help manage RAM usage.

3.1 Implementing native audio with the Flash IDE

Flash Lite 1.1 for S60 devices from Nokia employs a timeline approach to playing sound. Using the
Flash IDE, you can import WAV, AIFF, or MP3 sounds into a FLA library and then insert them into a
frame of a timeline in the FLA. The Flash Lite player plays a sound when its playhead enters a frame
containing sound. A timeline can contain a single sound, layers of sound, or sounds in a sequence.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 16

Figure 6: Flash Lite timeline

You can configure a sound using the Flash IDE sound inspector, usually appearing at the bottom of the
IDE workspace. From the inspector, you can insert a sound into a frame, choose a sync option, choose
the number of loops, or modify the sound using the “Edit” button. The sound inspector consists of a
Sound menu, Effect menu, Edit button, Sync menu, and Loop menu.

Figure 7: Sound inspector

3.1.1 Sound menu

The sound menu lists of all the sounds in the library. You can add (or change) a sound to a frame by
first selecting the keyframe to contain a sound, and then selecting a sound from this menu. The Flash
IDE displays the waveform of the selected sound in the keyframe. You can add frames to the keyframe
to see the entire sound waveform if necessary. To remove a sound from a frame, select the frame and
then select “none” from the sound menu.

3.1.2 Sync options menu

A sync option determines how a sound synchronizes with graphics and the means to start and stop a
sound. There are four sync behaviors.

3.1.2.1 Stream sync

Stream sync sounds are represented as frame size segments of audio synced with graphics in the
corresponding timeline. The Flash Lite 1.1 player will render graphic frames in sync with sounds set to
stream sync. If it is unable to render the graphics for a frame in time to keep sync with sound, Flash
Lite will skip the frame and begin rendering the next to ensure that sound and graphics remain
synchronized. Stream sync is effective for synchronizing long-form sounds with animation, such as
voice over content or music tracks.

Note: Note that Flash Lite 1.1 does not support progressive loading of stream sync sounds.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 17

3.1.2.2 Stream sync guidelines

Add enough frames to the timeline to see the entire waveform of the sound or the desired portion of
a stream sync sound to be played. Flash Lite will only play the portion of sound represented on the
timeline.

Optimize graphics that are synchronized with sounds set to stream sync. Flash Lite will skip the frames
that it cannot render in time to keep up with sound, which results in a less smooth animation.

Avoid looping stream sync sounds. Setting a number of loops in the inspector for a stream sync sound
causes the Flash IDE to duplicate the sound file by the desired number of loops, which increases the
resulting SWF file size.

Set compression for stream sync sounds in the Flash Tab of the publish settings window, not the
sound properties window.

3.1.2.3 Event sounds

Event is a general term for sounds set to event, start, and stop sync. Event sounds play independently
of a timeline. You can reuse event sounds throughout a FLA like a symbol without any increase in file
size. Event sounds are effective for music loops, short sound effects that are synched to a specific
frame, game sounds, and sounds associated with button presses.

• Event sync – Sounds set to event sync can overlap. Playing an event sync sound, then playing it
again before the original finishes, causes Flash Lite to play two versions of the sound: the original
and its echo. You should avoid accidentally overlapping event sync sounds because this can
increase processing demands. Event sync is appropriate for sounds that should overlap, such as
reverberant gun shot sound effects in a game.

• Start sync – Sounds set to start sync do not overlap and will not restart unless explicitly stopped.
You should use start sync for sounds that should not overlap, such as a backing music loop. If the
playhead re-enters a frame containing a music loop that is already playing, start sync prevents a
second copy of the loop from starting, avoiding cacophony.

• Stop sync – This option is a non-ActionScript sound command to stop the specified event type
sound. To stop sounds set to event or start sync, Flash Lite must play a frame containing the
corresponding sound set to stop sync. The Flash IDE represents stop sync sounds as a black
rectangle appearing in a frame.

3.1.3 Loop setting box

Sound looping is configured in the loop setting box of the sound inspector. You can define the number
of loops or select repeat for an infinite loop.

To ensure seamless looping, you should import uncompressed WAV or AIFF sounds, instead of
importing sounds precompressed with MP3. MP3 compression tends to add silence to the beginning
or end of a sound waveform. The Flash IDE places loop points at the beginning and end of the sound
waveform. During playback, Flash Lite will include this silence in the MP3 loop, causing a noticeable
gap in the loop during sound playback.

The Flash IDE offsets loop points to ensure that WAV and AIFF sounds compressed within the Flash
authoring environment using the built-in MP3 encoder will loop correctly.

Note: Not all S60 devices from Nokia will seamlessly loop MP3-compressed sounds. For widest
compatibility, use RAW or ADPCM compression for sounds intended for seamless looping.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 18

3.1.4 Effect menu

In this menu, you can select to fade a sound’s volume in or out over time or change stereo left and
right pan position over time. In most cases, the sound edit window is used to define more precise
changes to the sound volume or pan, instead of the preset volume and pan effects available in this
menu.

3.1.5 Sound edit window

Selecting the Edit button in the sound inspector opens the sound edit window. In the sound edit
window, you can apply non-destructive edits to a sound in a frame, such as shifting its start and stop
time, or applying a custom volume and pan envelope. These edits are specific to the instance and do
not affect the original source library item. Consequently you can use multiple variations of a sound
throughout a SWF, without increasing file size.

Common uses of the sound edit window:

• Attenuate the volume of a sound that distorts because it is too loud.

• Shorten the length of a sound for looping or sound effect design purposes.

• Fade a sound’s volume in or out over time, such as fading out a backing music loop.

• Change a sound’s pan over time (only supported on devices with stereo output).

• Create a mix of multiple sounds.

Figure 8: Example of custom edits in the edit window

Review the soundvariations.zip file (included in the same package as this document) for an
example of using the sound edit window to create 6 sound variations from 2 sound sources.

Note: There is a bug in Flash Lite 2.0 that prevents the player from correctly interpreting Sound Edit
window volume point positions or start and stop positions.

3.2 Controlling native audio playback with ActionScript

Flash Lite 1.1 ActionScript does not have a dedicated API for interacting with native audio sounds.
Instead, you can use timeline navigation commands such as gotoAndPlay(), play(), or stop()
to control playback of a sound by moving the movie clip playhead to a frame containing sound.

The means to control playback of native audio sounds depends on the sync setting of the sound. You
should be aware of the difference in sound playback behavior of stream sync sounds compared to
event type sounds, and choose sync settings carefully.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 19

Note: Flash Lite tends to introduce some latency between the time when ActionScript is called to start
or stop native audio sounds and when the sound actually starts or stops playing.

3.2.1.1 Controlling stream sync sounds

Stream sync sounds are tied closely to the timeline, and can be controlled using the timeline
navigation commands.

• play() – Starts playing a stream sync sound at the current frame position. You can use the
play() command to resume playback of a stream sync sound paused with the stop()
command.

• stop() – Stops movement of the playhead and pauses sound at the current frame position.

• gotoAndStop(frame number or label name) – Moves playhead to a new frame position
but does not resume playback. You can use this command to rewind a stream sync sound.

• gotoAndPlay(frame number or label name) – Moves playhead to a new frame position
and begins playback at the new frame position. You can use this command to rewind or fast-
forward the stream sync sound to a new frame position and restart playback at the new position.

3.2.1.2 Controlling event type sounds

Event type sounds are controlled in a different manner than stream sync sounds. Flash Lite 1.1 plays
an event type sound when the playhead enters a frame containing the sound. Event type sounds
continue to play independently of the graphical timeline playhead. Stopping the playhead will not
stop an event type sound. Also, unlike stream sync sounds, there is no means to pause and resume
playback of an event type sound at a position within the sound.

You can only stop event type sounds and start the sound from its beginning only. To stop an event
type sound, you must explicitly move the playhead to a frame containing the corresponding sound set
to stop sync.

The default behaviors of event sync and start sync do not support a standard stop before restart
behavior. To achieve a stop before restart behavior, you must stop a sound by moving the playhead to
a frame containing the corresponding sound set to stop sync, before moving the playhead to the
frame containing the sound itself.

The following movie clip structure demonstrates a technique of playing a stop sync sound in a frame
immediately before the actual sound. For event sync sounds, this automatically stops any previous
copy of the sound before restarting the sound. For start sync sounds, this stops the existing sound
enabling Flash Lite to restart it again.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 20

Figure 9: Example of playing a stop sync sound in a frame immediately before the actual sound

To achieve interactive control over event type sounds, you can use a movie clip structure like the
example above as a container for sound, and move the playhead, using the gotoAndPlay()
command, to the frames labeled “start” and “stop” to respectively start and stop the sound.

// code to start a sound
tellTarget("targetpathtosoundmc"){gotoAndPlay("start");}

// code to stop a sound
tellTarget("targetpathtosoundmc"){gotoAndPlay("stop");}

Tip: You can also stop all sounds that are currently playing with the stopAllSounds() command.
This command does not prevent sounds from playing again in the future; it only terminates all sounds
that are currently playing. The stopAllSounds()will stop a stream sync sound; however, Flash Lite
must reset the playhead to the first frame of the stream sync sound before restarting it.

3.3 Using sound compression

Flash Lite 1.1 for S60 devices from Nokia can play and decode MP3-compressed sounds and sounds
encoded with ADPCM (adaptive differential pulse code modulation) compression. Flash Lite does not
support the “speech” codec included in the PC version of Flash.

You can apply compression to sound library items used as event type sounds in the Sound Properties
window, which is accessible by double-clicking the sound in the Library window. Each event type
sound in the library can have a different compression setting.

For stream sync sounds, you should set compression from the Flash Tab of the Publish settings dialog,
which is accessible from the File menu. The Flash IDE applies this sound compression setting to all
stream sync sounds throughout a FLA.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 21

3.3.1 MP3 encoder

To use the Flash IDE MP3 encoder, select a bit rate from the MP3 bit rate list in the Sound Properties
window, and test the resulting audio quality by clicking the test button. Lower bit rates reduce the file
size and quality of sounds.

Figure 10: Setting a bit rate in the Sound Properties window

For mobile applications it is recommended to select the Convert stereo to mono check box. Mixing
from stereo to mono may improve sound quality and be more CPU-efficient for Flash Lite to play;
however, it does not significantly reduce MP3 file size. Also, most mobile devices do not yet support
stereo separation through external speakers, so stereo content is not crucial, unless you intend for
users to listen through headphones.

Tip: For precompressed MP3 sounds, check the “Use Imported mp3 Quality” check box and the Flash
IDE will not recompress the sound when publishing or testing the SWF. Imported MP3 should be in CBR
(constant bit rate) format and encoded at one of the bit rates listed in the Sound Properties window.

Note: Flash Lite 1.1 decodes MP3-compressed sound with its built-in MP3 decoder, which is more
CPU-demanding than playing ADPCM-encoded sounds.

Note: Not all S60 devices from Nokia will seamlessly loop MP3-compressed sounds. For widest
compatibility, use RAW or ADPCM compression for sounds intended for seamless looping.

3.3.2 ADPCM encoder

Compared to MP3, ADPCM is more CPU-efficient to decode but not as efficient at compressing sound.
The Flash IDE supports a proprietary range of ADPCM encoding bit values from 5 – 2bit, reducing the
file size to 31%, 25%, 19%, or 13% of the original file size. Smaller ADPCM bit values yield smaller
sound file sizes and reduced sound quality.

Figure 11: ADPCM encoder

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 22

3.3.3 Sound reformatting

Developers can also use sound reformatting techniques in combination with ADPCM to further reduce
the file size of a sound. The file size of a sound depends on the following parameters:

• Sound duration

• Stereo or mono

• Sample rate (44.1kHz, 22.05kHz, 11.025kHz, or 5kHz)

• Bit depth (16bit or 8bit)

Warning: For forward compatibility with Flash Lite 2.0, do not use the 5kHz sample rate. Flash Lite 2.0
plays 5kHz sounds incorrectly at a slower speed and lower pitch.

Reducing any one of these parameters removes data and decreases the file size of a sound. For mobile
applications, you should mix sound from stereo to mono, saving 50% on file size. Lowering the
sample rate, called “down sampling”, decreases the file size by 50% for each level of sample rate, but
will also remove high-end frequencies from the recording and may introduce distortion. Dropping the
bit depth from 16bit to 8bit reduces the file size by 50% but can add undesirable hiss.

To use 8bit sound, you must first convert sound to 8bit before importing because the Flash IDE does
not convert between 16bit and 8bit. Note that ADPCM and MP3 require 16bit-formatted sound and
that these sound reformatting techniques do not apply to MP3-encoded sounds.

3.4 Guidelines for preparing native audio content

Always test native audio sounds through the Flash Lite player. The audio output for Flash Lite yields a
different sound quality than the built-in sound player of a device.

Use a graphic equalizer to alter audio to achieve optimal projection through external speakers.
De-emphasize bass and high-end frequencies and emphasize mid-range frequencies.

Avoid using sounds with deep bass or high-end frequencies. These frequencies may not project well
through the small external speakers of a mobile device.

On some Nokia devices there is no significant sound quality difference between native audio with
44kHz sample rate and 11kHz sample rate when played through either the external speaker or
headphones. Consequently, it can be more efficient to use 11kHz sample rates because this format is
more CPU-efficient and smaller in file size than 44kHz. For MP3-compressed sounds, choose bit rates
that automatically downsample to 11kHz such as 24 (mono), 20, 16, and 8 kbps.

For forward compatibility with Flash Lite 2.0, do not use the 5kHz sample rate. Flash Lite 2.0 plays
5kHz sounds incorrectly at a slower speed and lower pitch.

Use RAW or ADPCM-compressed sounds for looping instead of MP3. On some devices, Flash Lite may
not have enough CPU resources to seamlessly loop mp3-compressed sounds, and instead plays the
loop with gap.

Limit the total file size of sound content concurrently loaded in the Flash Lite player to less than 1 MB
to avoid out-of-memory error messages.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 23

3.5 Using native audio and device sound together

Flash Lite for S60 devices from Nokia does not support playing native audio and device sound
simultaneously, but it is possible to alternate between the two sound systems. For situations where
device sounds and native audio sounds overlap or play simultaneously, Flash Lite gives priority to
sounds played through the native audio system.

When Flash Lite encounters a frame containing both a native audio sound and a device sound, it will
play the native audio sound and ignore the device sound.

When Flash Lite encounters a frame containing a native audio sound, it will stop any device sound
that is currently playing and start the native audio sound.

When Flash Lite encounters a frame containing a device sound, and a native audio sound is currently
playing, it will ignore the device sound and continue playing the native audio sound.

Note: For Flash Lite 1.1, playing a native audio sound that is set to stream sync will disable device
sound. A workaround for this is to play the stream sync sound, call stopAllSounds(), and then
play a device sound.

3.6 Comparing device sound and native audio

The primary advantages of device sound are its almost ubiquitous support across devices and its
tendency for smaller file size and more CPU-efficient content compared to the Flash Lite native audio
assets. Another advantage is that device sound can have higher quality output than the native audio
implementation on S60 devices from Nokia which automatically alters audio sample rates.

On Flash Lite 1.1-enabled S60 and Series 40 devices from Nokia, device sound is limited to playing
single MIDI files. MIDI files depend on the built-in sounds of the device synthesizer and cannot contain
recorded audio or vocal audio content.

In contrast, Flash native audio has capabilities that are more suitable for multimedia applications than
device sound. Native audio offers the same sound experience on compatible devices, has an MP3
decoder, can reliably synchronize sound and graphics, and can layer multiple sounds simultaneously.

Compared to MIDI device sounds, native audio assets are not as CPU-efficient, can be much larger in
file size, and may not yield high-quality results due to Flash Lite downsampling during playback. Also,
native audio features are not supported by all Flash Lite-enabled Nokia devices.

Features MIDI device sound Native audio

Supported devices S60 and Series 40 S60

CPU usage Minimal Can be significant

File size Minimal Can be large depending on
assets

Audio codecs n/a MP3, ADPCM

Looping Timeline repeat Seamless

Sound layering Single sound only 4 – 8 sounds

Synchronizing sound and
animation

Limited to trigger
synchronization

Stream sync resynchronization
behavior

Table 1: Comparison between MIDI device sound and native audio

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 24

4 Terms and abbreviations

Term or abbreviation Meaning

ADPCM Adaptive differential pulse code modulation. A CPU-efficient form of
audio encoding that generally reduces file size to 25% of the original,
giving a 4:1 compression ratio.

AIFF Uncompressed Audio Interchange format common to the Apple
Computer platform.

FLA Format of the Flash IDE software, not applicable to the player. Executing
the test or publish command within the IDE converts the FLA into SWF.

MFi Melody for imode, a MIDI-based sound format developed by Faith Inc.
for NTT DoCoMo i-mode service.

MIDI Musical instrument digital interface. Industry standard protocol for
sending messages between electronic musical instruments.

MP3 Common abbreviation for MPEG 1 layer III encoding.

OTA Over-the-air delivery of content through a cellular phone network.

SMAF Synthetic Music Application Format, a MIDI-based ring tone format
developed for mobile devices by Yamaha.

SMF Standard MIDI file format.

SP-MIDI Scalable polyphony specification for MIDI files.

SWF Compiled format for Flash Lite player.

WAV Uncompressed Audio Interchange format common to the Microsoft
Windows platform.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 25

Appendix A Getting device volume

Flash Lite 1.1 has a set of commands known as “FSCommand2” functions for returning information
about or interacting with a device. Flash Lite 1.1 for some Nokia devices supports FSCommand2
functions to get the current volume of a device and its maximum allowed volume. Note that it is not
possible to set the volume using Flash Lite 1.1 ActionScript.

// FSCommand2 to get volume
maxvol = FSCommand2("GetMaxVolumeLevel"); // maximum allowed volume
currentvol = FSCommand2("GetVolumeLevel"); // current volume

Flash Lite-enabled S60 devices from Nokia support a range of 0 to 10 and Series 40 devices a range of
0 to 100 for these two parameters. Some Series 40 devices, such as Nokia 6125, do not support these
parameters and return a value of –1. The default volume settings and values for GetVolumeLevel
vary depending on the device.

Note: Flash Lite 1.1 for S60 devices from Nokia supports a volume setting option that can be set in the
application Options menu. This feature is not available for Flash Lite 1.1 for Series 40 devices. Many
Nokia devices have external volume control keys to facilitate changes in device volume.

You can use the two FSCommand2 functions to check that the device volume is set to an acceptable
level to project sound clearly.

// check the device's current volume
currentvol = FSCommand2("GetVolumeLevel");
if(currentvol == 0){ // phone volume at 0
 textbox = "Phone volume is set to 0. Please set volume to 50%.";
}

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 26

Appendix B Using sound capability properties

Flash Lite has a set of read-only global properties that provide information about the device including
its sound capabilities. Table 2 explains each sound property and the value Flash Lite 1.1 should return
depending on the platform.

Property Description S60 Series 40

_capCompoundSound Returns the value of 1 if the device supports
compound sound. A compound sound is a
sound bundle containing different device sound
formats.

1 1

_capMFi
Returns the value of 1 if the device supports the
i-mode MFi format.

0 0

_capMIDI Returns the value of 1 if the device supports the
MIDI format.

1 1

_capMP3 Returns the value of 1 if Flash Lite has a built-in
MP3 decoder.

1 0

_capSMAF Returns the value of 1 if the device supports the
Yamaha SMAF format.

0 0

_capStreamSound Returns the value of 1 if the device supports
stream synch sounds in the native audio
implementation.

1 0

Table 2: Sound properties

Note: Not all devices report accurate values for the capability properties listed in Table 2. For example,
Flash Lite for Nokia 5300 (Series 40) incorrectly reports a value of 1 for both the _capMP3 and
_capStreamSound properties even though it does not support the native audio implementation.

You can use these variables to get information about a device during the development phase or
inform a user about the sound limitations of a device. It is not necessary to use a target path to access
the value of global properties.

The following code example demonstrates how to detect whether a device supports the Flash Lite
built-in MP3 encoder and informs the user accordingly.

// notify the user that a Series 40 device does not support sound
// for a game containing stream synch sounds
if(_capMP3 < 1){ // device does not support MP3-encoded sound
 textbox = "Game sound is not compatible with this phone.";
}

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 27

Appendix C Launching the sound player application

In addition to playing sound from ActionScript, Flash Lite 1.1 for S60 devices from Nokia can also
launch the device sound player application to play a sound. Note that this technique changes focus
from the Flash Lite player to the sound player application. The sound player application will launch
and display in front of the Flash Lite player covering any Flash Lite content. Users must explicitly exit
the sound player to return to the Flash Lite application.

You can use the ActionScript getURL() function to trigger the device to launch the sound player
application and play the sound at the file location specified in the getURL() argument. The
following code triggers a device to open an MP3 file with the sound player application.

// open an MP3 file from the same directory as SWF
// with device’s built-in sound player application
getURL(“song.mp3”);

Note: This feature is not supported by Flash Lite 1.1 for Series 40 devices.

Forum.Nokia.com

 Flash Lite 1.1: Sound for Nokia S60 and Series 40 Devices 28

About the author

Hayden Porter, the author of this document, is a Flash Lite developer with a special interest in
integrating sound and music with mobile devices. He has written extensively on the subject of
interactive sound including white papers for leading mobile device manufacturers and articles for
publications such as Electronic Musician Magazine, Music Education Technology Magazine, and
DevX.com. For more information, see www.aviarts.com.

Evaluate this resource

Please spare a moment to help us improve documentation quality and recognize the resources you
find most valuable, by rating this resource.

http://www.aviarts.com/
http://www.forum.nokia.com/main/1%2C%2C90%2C00.html?surveyId=a5412677-bf2d-46f7-9cc8-3b5e17aa7877/Flash_Lite_1_1_Sound_for_Nokia_S60_and_Series_40_Devices_v1_0_en.zip

	1 Introduction
	2 Flash Lite 1.1 device sound
	2.1 Understanding the MIDI format
	2.2 Limitations of MIDI
	2.3 Using MIDI for music
	2.3.1 Guidelines for MIDI music
	2.3.2 Guidelines for MIDI compatibility

	2.4 Using MIDI for sound effects
	2.4.1 Common MIDI sequencing techniques

	2.5 Looping MIDI files
	2.6 Testing MIDI sounds
	2.6.1 S60 devices from Nokia
	2.6.2 Series 40 devices from Nokia

	2.7 Integrating MIDI with Flash Lite content
	2.7.1 Embedding MIDI within SWF
	2.7.2 Controlling MIDI playback with ActionScript
	2.7.3 Synchronizing MIDI and animation
	2.7.4 Guidelines for synchronizing MIDI and animation

	3 Flash Lite 1.1 native audio
	3.1 Implementing native audio with the Flash IDE
	3.1.1 Sound menu
	3.1.2 Sync options menu
	3.1.2.2 Stream sync guidelines
	3.1.2.3 Event sounds

	3.1.3 Loop setting box
	3.1.4 Effect menu
	3.1.5 Sound edit window

	3.2 Controlling native audio playback with ActionScript
	3.2.1.1 Controlling stream sync sounds
	3.2.1.2 Controlling event type sounds

	3.3 Using sound compression
	3.3.1 MP3 encoder
	3.3.2 ADPCM encoder
	3.3.3 Sound reformatting

	3.4 Guidelines for preparing native audio content
	3.5 Using native audio and device sound together
	3.6 Comparing device sound and native audio

	4 Terms and abbreviations
	About the author
	Evaluate this resource

