

F O R U M N O K I A

Flash Lite 2.0: Screen Saver and
Wallpaper

Version 1.0; June 27, 2008

Flash Lite 2.0

Forum.Nokia.com

Copyright © 2008 Nokia Corporation. All rights reserved.

Nokia and Forum Nokia are trademarks or registered trademarks of Nokia Corporation. Other product and
company names mentioned herein may be trademarks or trade names of their respective owners.

Disclaimer

The information in this document is provided “as is,” with no warranties whatsoever, including any warranty of
merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal,
specification, or sample. This document is provided for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to
implementation of information presented in this document. Nokia Corporation does not warrant or represent
that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this document at any time, without notice.

License

A license is hereby granted to download and print a copy of this document for personal use only. No other license
to any other intellectual property rights is granted herein.

 Flash Lite 2.0: Screen Saver and Wallpaper 2

Forum.Nokia.com

Contents

1 Introduction.. 5
2 Flash Lite 2.0 standby screen animation support ... 6
3 Example 1: Classic bouncing animation screen saver.. 7

3.1 Planning the project..7
3.2 Creating a new ActionScript class file..7
3.3 Creating the BouncingAnimation.as class..8

3.3.1 Specifying the canvas movieclip ...8
3.3.2 Defining the boundaries of the screen ...9
3.3.3 Creating the wall movieclips...10
3.3.4 Attaching the moving object ..11
3.3.5 Initiating the animation...12
3.3.6 Moving the object ...13
3.3.7 Detecting a collision...14
3.3.8 Setting the animation speed ..15

3.4 Configuring an animation ..16
4 Example 2: Scaling the size of the moving object...17

4.1 Setting the font size ...18
4.1.1 Using the TextField autoSize property...18
4.1.2 Using the TextFormat size property ...18
4.1.3 Repositioning the wall due to dynamic text margin..19

5 Example 3: Adding visual effects ...21
5.1 Tiling a texture across the stage..21
5.2 Creating a tiled background layer ...23
5.3 Creating a tiled masked layer..24

5.3.1 Understanding dynamic masks..25
5.4 Randomizing the text ..26

6 Summary ...27
7 About the author ...28
8 Evaluate this resource ..29

 Flash Lite 2.0: Screen Saver and Wallpaper 3

Forum.Nokia.com

Change history

June 27, 2008 Version 1.0 Initial document release.

 Flash Lite 2.0: Screen Saver and Wallpaper 4

Forum.Nokia.com

1 Introduction

In addition to being an effective platform for casual games and data driven applications, Adobe Flash
Lite for Nokia devices supports compelling personalization content like animated dynamic screen
savers and wallpapers. The Flash Lite platform brings to Nokia devices a sophisticated animation
engine that supports a mix of vector and bitmap animation in screen saver/wallpaper content.
Furthermore, Flash Lite screen saver/wallpaper applications can execute ActionScript to dynamically
adjust the visual content of the animation depending on the date or the time of day, or completely
randomly, enabling entertaining content that is dynamic and ever changing.

This document explores the different features of Flash Lite 2.0 for creating dynamic screen saver and
wallpaper animation. Some of the concepts you will learn include using ActionScript to adjust the
visual content to fit the stage, and creating visual interest with randomness and the application of a
dynamic mask.

 Flash Lite 2.0: Screen Saver and Wallpaper 5

Forum.Nokia.com

2 Flash Lite 2.0 standby screen animation support

Nokia Series 40 3rd Edition, Feature Pack 2 devices support Flash Lite 2.0 content for standby screen
screen saver and wallpaper animation. Nokia S60 3rd Edition, Feature Pack 1 devices support Flash
Lite 2.0 content for standby screen saver animation only.

Note: Nokia S60 and Series 40 phones require a SIM card with an active account to display Flash Lite
screen savers and play timeline animation in wallpapers. Nokia devices will play ActionScript
controlled animation for wallpapers without an active SIM card.

The Nokia 6290 S60 3rd Edition, FP1 phone includes a Flash Lite 2.0 standalone player but does not
support SWF animation for screen savers.

 Flash Lite 2.0: Screen Saver and Wallpaper 6

Forum.Nokia.com

3 Example 1: Classic bouncing animation screen saver

In the first example you will learn how to create the classic “bouncing” animation screen saver where
an object moves across the screen and rebounds off of the edge of each side of the screen.

Since this is a common form of screen saver, you will develop a simple ActionScript 2 Class to
streamline the process of creating a screen saver. The advantage of using a class is that it reduces the
amount of time and code required to create a new screen saver. Once you have completed the initial
work to develop the class, you simply import the class into the ActionScript code of your FLA, add a
few lines of ActionScript to customize the screen saver, and your screen saver is ready for testing.

Figure 1: Example 1 bouncing animation

3.1 Planning the project

Before you begin working on the ActionScript for the class, it is a good idea to take an inventory of
what your class needs to do. The most basic form of this animation consists of the following:

1. Specify a canvas movieclip on which to build the screen saver.

2. Define the boundaries of the screen saver.

3. Attach the moving object to the canvas movieclip.

4. Move the object on the screen.

5. Detect a collision between the object and the edge of the screen.

6. Determine the new direction for the object to travel based on the edge it collides with.

7. Set the speed of the moving object.

3.2 Creating a new ActionScript class file

An ActionScript Class file is a separate document from the FLA of your screen saver. The class file
contains the ActionScript for the class. Creating an ActionScript Class file in Flash CS3 is a four-step
process:

1. Open the File menu and select New to open the New Document dialog box.

2. Select ActionScript File from the menu in the New Document dialog box.

 Flash Lite 2.0: Screen Saver and Wallpaper 7

Forum.Nokia.com

Figure 2: New Document dialog box

3. Click OK.

4. Save the ActionScript file as BouncingAnimation.as in the same folder as your screen saver FLA.

Tip: It is a common convention for the file name and the ActionScript name of the class to be the
same.

Flash CS3 opens the new ActionScript file in a separate window from your FLA. Create the ActionScript
for the class in this window. When you work with class files in Flash CS3 you will likely be switching
between the file containing the ActionScript for the class, and the ActionScript window of your FLA
listing code specific to your screen saver. You may find it useful to use the Flash CS3 Window menu to
switch between the two documents.

At this point, you should open the BouncingAnimation.as file from the files included in the article
download to follow how the class file is structured. The BouncingAnimation.as file is located in the
folder named example 1.

3.3 Creating the BouncingAnimation.as class

In the BouncingAnimation.as document create a class declaration, which is the name of the class. Add
the properties and functions, also called methods, for your class inside the curly brackets.

class BouncingAnimation{
 // place members of the class within the curly braces
}

Note: Normally you would define properties at the beginning of the class and methods after the
properties. To make the examples easier to follow, the code for the class will appear in the order as it
is described in the article.

Note: An in depth discussion of ActionScript object oriented programming is beyond the scope of this
article and not necessary for the simple examples included in the article. For more information, refer
to ActionScript Classes in the Flash Help documentation.

3.3.1 Specifying the canvas movieclip

The first step in building the screen saver is defining a movieclip to act as a canvas that holds all of the
visual assets for the animation. Consequently, your class needs a way to know what the canvas will
be.

 Flash Lite 2.0: Screen Saver and Wallpaper 8

Forum.Nokia.com

When you create a class you often define a constructor function. This is the function that creates an
instance of your class. You must call this function from your FLA ActionScript before you can create or
configure the screen saver. Since this is the first step in creating your BouncingAnimation instance, set
up the class constructor function to expect a movieclip object and make this the canvas for building
the screen saver.

Note: A constructor function’s name must be exactly the same as the class declaration name.

/*
constructor function
*/
public function BouncingAnimation(mco:MovieClip){
 this.canvas_mc = mco;
 this.drawWalls();
}

The BouncingAnimation constructor function expects a movieclip object and assigns it to the
canvas_mc property. This property represents the movieclip upon which Flash Lite builds all assets
for your screen saver animation. For example, if you create your instance on the _root timeline and
pass the keyword this as the movieclip object, then Flash Lite will build your screen saver on the
_root timeline.

/*
ActionScript in the root timline of your screen saver FLA.
Create an instance of the BouncingAnimation class.
Pass the keyword “this” to the function to set the current timeline as
the canvas for the screen saver
*/
var cool:BouncingAnimation = new BouncingAnimation(this);

Because the constructor function refers to the canvas_mc property you also need to define this
property in the class.

/*
canvas movieclip to draw and attach all animation assets
*/
private var canvas_mc:MovieClip;

The code above defines the canvas_mc property and sets its data type to a moveclip. This property
will represent a container movieclip to hold all assets for the screen saver. Make this property
private to protect it from being inadvertently altered by code running outside of the class.

Note: Public functions and properties can be called from ActionScript in your screen saver FLA. Private
functions and properties can only be called by code within the class declaration braces. The private
designation prevents outside ActionScript from inadvertently changing a value.

3.3.2 Defining the boundaries of the screen

The second step in building the screen saver is defining the boundaries of the screen. Add this
capability also to the constructor function, so that when you call the constructor function to create the
instance from your FLA Actionscript, it automatically defines both the canvas movieclip and the
boundaries for the screen saver.

/*
constructor function
*/
public function BouncingAnimation(mco:MovieClip){
 this.canvas_mc = mco;
 this.drawWalls();
}

 Flash Lite 2.0: Screen Saver and Wallpaper 9

Forum.Nokia.com

The drawWalls() function creates movieclips along each edge of the screen.

One approach for detecting when the moving object collides with an edge of the screen is to use the
Flash Lite 2.0 hitTest() function. The hitTest() function determines whether two movieclips
intersect. To make use of hitTest() collision detection you first need to create movieclips along
each edge of the screen.

3.3.3 Creating the wall movieclips

The drawWalls() function begins the process of creating movieclips, that is, “walls”, along each
edge of the screen by establishing the x and y corners for each wall and passing these coordinates to
the drawWall() function.

/*
draw four walls
*/
public function drawWalls(){
 // create objects representing corners of stage
 var topleftcorner:Object = {xpos:0,ypos:0};
 var toprightcorner:Object = {xpos:Stage.width,ypos:0};
 var bottomleftcorner:Object = {xpos:0,ypos:Stage.height};
 var bottomrightcorner:Object = {xpos:Stage.width,ypos:Stage.height};

 // draw 1 wall for each side of the stage
 this.topwall = this.drawWall("topwall",topleftcorner,toprightcorner);
this.bottomwall =
this.drawWall("bottomwall",bottomleftcorner,bottomrightcorner);
 this.leftwall =
this.drawWall("leftwall",topleftcorner,bottomleftcorner);
 this.rightwall =
this.drawWall("rightwall",toprightcorner,bottomrightcorner);
}

Determine the corners of the walls by using the Stage class width and height properties. Flash
Lite 2.0 cannot detect the actual screen size of a device. However, it can read the size of the stage,
using the Stage.width and Stage.height properties, as specified in the FLA before publishing to
SWF.

The drawWalls() function sets out the points for each wall and calls the drawWall() function four
times, once for each wall. Assign the movieclip returned from the drawWall() function to a property
representing each wall of the screen saver. Since you have defined four new properties in this
function, you must also declare these properties in your class.

/*
movieclips representing walls
*/
public var topwall:MovieClip;
public var bottomwall:MovieClip;
public var leftwall:MovieClip;
public var rightwall:MovieClip;

Make these properties public in case you need to reposition the walls from ActionScript in your FLA.

The drawWall() function creates a wall as a transparent 1-pixel line movieclip along the specified
edge of the stage. This function expects a name for the wall, and a start and end point. The start and
end point variables are objects with two properties; one for the point’s x coordinate and one for the y
coordinate.

/*
draw a movieclip containing a single line

 Flash Lite 2.0: Screen Saver and Wallpaper 10

Forum.Nokia.com

position movieclip along specified side of the stage
*/
public function
drawWall(wallname:String,startpoint:Object,endpoint:Object):MovieClip{
 // create a movieclip for the wall
 var wall:MovieClip =
this.canvas_mc.createEmptyMovieClip(wallname,this.canvas_mc.getNextHighe
stDepth());

 // draw a single line from start point to end point
 wall.beginFill(0x000000,0); // 0 _alpha creates transparent fill
 wall.lineStyle(0,0xFF0000,0); // hairline thickness, 0 _alpha creates
transparent line
 wall.moveTo(startpoint.xpos,startpoint.ypos);
 wall.lineTo(endpoint.xpos,endpoint.ypos);
 wall.endFill();

 return wall;
}

This function calls the MovieClip object createEmptyMovie() method to create a movieclip for a
wall. It places the new movieclip on the canvas_mc and uses the Flash Lite 2.0 Drawing API to draw
a 1 pixel sized transparent line into the movieclip. Flash Lite automatically positions the movieclip on
the canvas movieclip depending on the x and y position of the moveTo() Drawing API method.

To use the Flash Lite 2.0 Drawing API first call the beginFill() function to establish the fill color
and opacity of the movieclip. In this case you create a transparent fill by passing 0 as the _alpha
channel value for the fill. Next, define a 1-pixel transparent line style from the lineStyle()
method. Use the moveTo() method to define the starting point for drawing the movieclip and the
lineTo() method to actually draw a line from the starting point to the ending point. Finally, call the
endFill() method to complete the drawing. These five lines of code create the movieclip along the
specified edge of the screen.

An advantage of generating the wall movieclips with ActionScript is that the boundaries of your
screen saver adapt to the size of the SWF’s stage. When you publish your screen saver SWF to a
different phone screen size, you do not need to manually adjust the size of the wall movieclips. Flash
Lite automatically builds the screen saver wall movieclips to the size of the stage you specify in the
FLA. This speeds up production time because all you need to do is publish your screen saver SWF to
the various screen sizes of your target phones. When the SWF runs as a screen saver or wallpaper on
the phone, Flash Lite automatically draws the wall movieclips to the screen size of the phone.

3.3.4 Attaching the moving object

Now that you have defined the canvas movieclip and drawn the four movieclip walls to make the
boundaries of the screen saver, you can set up the process for attaching the moving object to the
screen saver canvas.

First you need to create a movieclip to represent the moving object. For Example 1 there is a
movieclip asset named “textmc” in the library of bouncinganimation.fla. The textmc movieclip
consists of a static text box with the word “COOL” set to bold style at size 50. The registration point in
the center of the text box and positioned at 0,0.

Create a function in the class file called setMovingOjbect() that attaches the textmc movieclip
asset to the screen saver canvas movieclip. To dynamically attach a movieclip asset from the library to
the stage using ActionScript, you must assign an ActionScript identifier to the asset.

Open the linkage properties window for the asset by selecting the asset and choosing linkage from
the library menu. Enter a linkage identifier, which must be a string with no spaces, and check “Export
for ActionScript”.

 Flash Lite 2.0: Screen Saver and Wallpaper 11

Forum.Nokia.com

Figure 3: Linkage Properties dialog box

In your class file create the setMovingOjbect() function. This function expects the linkage
identifier for the asset, and a starting x and y coordinate.

/*
assign movieclip of the moving object to the instance
startx and starty are starting corordinates of for the moving object
*/
public function setMovingObject(asset,startx:Number,starty:Number){
 // attach movieclip asset from library onto canvas_mc
 this.movingobject =
this.canvas_mc.attachMovie(asset,"movingobjectmc",this.canvas_mc.getNext
HighestDepth());

 // position moving object
 this.movingobject._x = startx;
 this.movingobject._y = starty;
}

The setMovingOjbect() function uses the MovieClip object attachMovie() method to
attach the movieclip asset to the canvas movieclip at runtime and positions it in the specified starting
point by assigning the movieclip _x and _y properties to the startx and starty variables. Since
you created a new property in this function to represent the moving object, you must declare this
property in the class.

/*
movieclip representing the moving object that bounces off of walls
*/
public var movingobject:MovieClip;

The movingobject property represents the movieclip for the moving object of the screen saver.
Make this property public so you can access it from code in your screen saver FLA.

3.3.5 Initiating the animation

Now you are ready to create the code to move the object on the screen. In the class add a new
function named startAnimation() that initiates the animation.

/*
starts the animation by repeatedly calling moveObject from canvas_mc
onEnterFrame loop
*/
public function startAnimation(){

 Flash Lite 2.0: Screen Saver and Wallpaper 12

Forum.Nokia.com

 /*
 randomly determine the starting vertical and horizontal direction
 */
 this.xdir = (Math.random() >= 0.5) ? 1: -1; // random x direction
 this.ydir = (Math.random() >= 0.5) ? 1: -1; // random y direction

 /*
 start the animation by repeatedly calling moveObject from
onEnterFrame loop
 scope moveObject function to the BouncingAnimation instance instead
of canvas_mc
 */
 this.canvas_mc.onEnterFrame = Delegate.create(this, moveObject);
}

First, the function randomly determines the direction for the moving object to travel. It uses the
Math.random() method to generate a random value between 0 and 0.9. If the value is greater than
0.5, assign the xdir and ydir properties to + 1, otherwise assign them to –1.

Next, the function assigns the moveObject() function to the canvas movieclip onEnterFrame
event. The onEnterFrame event executes the moveObject() function at the frame rate specified
in your screen saver FLA.

Normally you assign the moveObject() function directly to the onEnterFrame event as an object
literal. However, in this case the keyword this changes its scope from referring to your instance of
the BouncingAnimation, to referring to the canvas_mc movieclip, causing unexpected behavior
in your code.

Instead, use the Delegate.create method of the Delegate class to rescope the keyword this to
your instance of the BouncingAnimation class. In the code at the top of your class file before the
BouncingAnimation class declaration, add the following line of code to import the Delegate
class, so your code can use the Delegate.create method:

import mx.utils.Delegate; // required to use Delegate

Flash CS3 automatically includes the appropriate ActionScript for the Delegate class in your FLA
when you publish the SWF.

Since you created the xdir and ydir properties within the startAnimation() function you must
also define these in the class. These properties are private and should only be accessible to functions
within the class.

/*
control animation direction
xdir = 1, right, xdir = -1, left
ydir = 1,down, ydir = -1, up
*/
private var xdir:Number;
private var ydir:Number;

3.3.6 Moving the object

The moveObject() function changes the position of the moving object each time it is called. Flash
Lite repeatedly calls the moveObject() function from the onEnterFrame loop at the speed of the
frame rate. This causes the moving object to move across the screen.

/*
change position of the movingobject

 Flash Lite 2.0: Screen Saver and Wallpaper 13

Forum.Nokia.com

repeatedly called from canvas_mc onEnterFrame loop
*/
private function moveObject(){
 // change movingobject position
 this.movingobject._x += this.speed * this.xdir;
 this.movingobject._y += this.speed * this.ydir;

 // check for collision with left and right walls
 if(this.movingobject.hitTest(this.rightwall) ||
this.movingobject.hitTest(this.leftwall)){
 this.xdir = -this.xdir; // change x direction
 }

// check for collision with top and bottom walls
 if(this.movingobject.hitTest(this.topwall) ||
this.movingobject.hitTest(this.bottomwall)){
 this.ydir = -this.ydir; // change y direction
 }

}

The moveObject() function determines the new position for the moving object and assigns the
new values to the _x and _y movieclip properties on each frame of the onEnterFrameLoop
causing the moving object to move on a diagonal line. The movieclip will continue to move along the
same diagonal line until it reaches an edge of the screen.

The xdir and ydir values determine the direction of the moving object. A +1 value for xdir moves
the moving object to the right, and a –1 value moves the object to the left. A + 1 value for ydir
property moves the moving object down, and a –1 value moves the object up.

The speed property determines distance in pixels to move the object. A higher speed causes the
moving object to move a larger distance in pixels on each frame of the onEnterFrame loop.
Increasing the FLA frame rate also creates a sense of a faster moving animation because Flash Lite is
calling the moveObject() function more frequently which in return moves the object across the
screen more quickly.

Tip: For the smoothest quality of animation, choose the fastest frame rate and a smaller speed setting.
You may need to experiment to find the most CPU friendly combination.

3.3.7 Detecting a collision

The moveObject() function also checks for a collision using the hitTest() function. To check for
a hitTest() you pass the movieclip object representing a given wall to the hitTest() method of
the moving object movieclip. If hitTest() returns true then the moving object has collided with
the specified wall.

private function moveObject(){
 // change movingobject position
 this.movingobject._x += this.speed * this.xdir;
 this.movingobject._y += this.speed * this.ydir;

 // check for collision with left and right walls
 if(this.movingobject.hitTest(this.rightwall) ||
 this.movingobject.hitTest(this.leftwall)){
 this.xdir = -this.xdir; // change x direction
 }

 // check for collision with top and bottom walls
 if(this.movingobject.hitTest(this.topwall) ||

 Flash Lite 2.0: Screen Saver and Wallpaper 14

Forum.Nokia.com

 this.movingobject.hitTest(this.bottomwall)){
 this.ydir = -this.ydir; // change y direction
 }
}

If one of the hitTest() checks returns true, that is, when the moving object reaches the edge of
the screen, the function changes the value of either the xdir or ydir properties to +1 or – 1
depending on the wall the moving object collides with.

For example, if the moving object is traveling along a diagonal line to the right and down and it
collides with the right wall then the moveObject() function changes the xdir to –1 so that the
moving object changes direction to the left, that is, bounces to the left, but still continues in a
downward direction. Setting xdir to –1 reduces the value of _x causing the moving object to move
towards the left. The value of +1 for the ydir increases the _y value causing the object to continue to
move downward.

In some cases the moving object will bounce in the corner colliding with two walls simultaneously, so
it is important to check for a collision with all walls on each frame to prevent the moving object from
moving in an unintended manner.

3.3.8 Setting the animation speed

You need to configure the speed property from ActionScript in your FLA, which requires that the value
of the speed property be both readable and writeable from ActionScript. Use special getter and
setter functions to read and write values to the speed property.

In your class create a private property to store the speed value.

/*
read/write speed property, use get/set
rate of movement per frame in pixels
*/
private var __speed:Number;

Use the double underscore naming convention for this property and make it private as a precaution to
avoid ActionScript variable naming confusion.

To make a property readable create a getter function.

/*
get value of speed property
*/
public function get speed(){
 return this.__speed;
}

To make a property writable create a setter function.

/*
set value of speed property
*/
public function set speed(value:Number){
 this.__speed = value;
}

The name of these functions actually represents the speed property. When you get or set the value
of speed in your FLA ActionScript you access speed as a property of your instance, not as a function.
Flash Lite will know to execute the get or set speed() functions depending on the context of your
code. You do not need to include the ().

 Flash Lite 2.0: Screen Saver and Wallpaper 15

Forum.Nokia.com

// FLA ActionScript
// set the speed property
// calls set speed() function in the class
cool.speed = 6;

// trace the value of the speed property
// calls get speed() function in the class
trace(cool.speed) // prints “6” in the output window

3.4 Configuring an animation

Now you have finished creating the BouncingAnimation class. Next, set up the FLA ActionScript to
configure your screen saver. Open the bouncinganimation.fla from the example 1 folder included in
the article download. The ActionScript from frame 1 related to configuring the screen saver is
reproduced below. As you can see, once you have created the class there is not much code required to
create a new screen saver animation.

import BouncingAnimation.as;

// create a new instance of BouncingAnimation, pass a movieclip
reference to be the canvas
var cool:BouncingAnimation = new BouncingAnimation(this); // _root is
the canvas for this instance

// set speed, the number of pixels to change per frame
cool.speed = 4;
// attach a movieclip asset and position it in the center of the stage
cool.setMovingObject("textmc",Stage.width/2,Stage.height/2);

// finished building screen saver, now play the animation
cool.startAnimation();

The first step is to use the import statement to import the class. Make sure the class file is in the
same folder as your screen saver FLA. Then create an instance of the class and pass the canvas
movieclip to the constructor function. In this case you will use the _root timeline as the canvas.
Next, set the speed and attach the moving object at the center of the canvas. Finally, start the
animation. You can now test your animation in the Adobe Device Central emulator.

 Flash Lite 2.0: Screen Saver and Wallpaper 16

Forum.Nokia.com

4 Example 2: Scaling the size of the moving object

In the first example you used ActionScript to draw wall movieclips according to the size of the stage so
that the content adapts to the size of the screen. In example 2 you will extend this concept to adapt
the size of the moving object according to the size of the stage. Nokia Flash Lite 2.0 devices support at
least two screen sizes; 128 x 160 and 240 x 320. The word “COOL” set at 50 point font size in example
1 works well for 240 x 320 devices but seems too large in devices with a 128 x 160 screen.

Figure 4: 240 x 320 screen COOL set to 40 pt

Figure 5: 128 x 160 screen COOL set to 24 pt

In example 2 you will modify your FLA ActionScript to change the font size depending upon the size of
the stage, so the word "COOL" occupies approximately the same percentage of the screen regardless
of screen size. Using ActionScript to dynamically adjust the size of the moving object offers a more
consistent experience across device screen sizes and also streamlines the screen saver production
process.

Open the bouncinganimation.fla from the example 2 folder included in the article download. To
dynamically change the font size of the moving object, you need to change the textfield in the textmc
movieclip to a dynamic text box. Open the textmc movieclip, change its textfield type to dynamic, and
give it the instance name msg in the property inspector.

Figure 6: Property Inspector settings for msg dynamic textfield

 Flash Lite 2.0: Screen Saver and Wallpaper 17

Forum.Nokia.com

4.1 Setting the font size

Flash Lite defaults to setting the size of the msg TextField based on the width and height values in the
property inspector, which are approximately 145 x 74 pixels, and scales the dimensions of the
movingobject movieclip according to the TextField size.

Changing the font size of the msg TextField does not change its physical dimensions. While the text
appears smaller, the box containing the text and the movingobject movieclip are sized according to
the width and height of the TextField, not the text. If you scale the text to a smaller font size, there
will be extra space around the text causing the appearance that the moving object bounces before the
text reaches the edge of the screen.

Figure 7: Border shows margin around text.

To address this problem use the autoSize property of the TextField class to adjust the width and
height of the msg TextField to fit the text.

4.1.1 Using the TextField autoSize property

The following code configures the msg TextField so that its width expands or contracts to the size of
the text. The value of autoSize is “center” to coincide with the original alignment setting from the
properties inspector of the msg TextField.

/*
apply formatting to the msg textfield object in the movingobject
movieclip
*/
// fit different text length and font size, align center
cool.movingobject.msg.autoSize = "center";

With this configuration, Flash Lite 2.0 changes the msg TextField width and height according to the
font size of the text and also to fit the text length of different words. Flash Lite 2.0 also adjusts the
size of the movingobject movieclip so there is no extra space to the right or left of the text.
Consequently, the moving object will appear to bounce when the text reaches the edge of the screen,
which is the desired visual effect.

4.1.2 Using the TextFormat size property

To change the font size, use the TextFormat class. First, create an instance of the TextFormat
class called basestyle:

// create a style for the text field
var basestyle:TextFormat = new TextFormat();

 Flash Lite 2.0: Screen Saver and Wallpaper 18

Forum.Nokia.com

Then set the new font size by assigning a value to the size property of basestyle. Use a switch
statement to assign a font size according to the Stage.height property. This adjusts the font size
according to the phone screen size.

// set font size based upon Stage height
switch(Stage.height){
 case 320: basestyle.size = 40; break;
 case 160: basestyle.size = 24; break;
 default: basestyle.size = 34; // default font size for other stage
sizes
}

Finally, apply the format using the TextField setTextFormat() method by passing the
basestyle instance to the method.

// apply style to the text field
cool.movingobject.msg.setTextFormat(basestyle);

When you publish your SWF to different stage sizes to match different phone screen sizes and test the
SWF in Device Central or on a phone, Flash Lite 2.0 will adjust the font size of the moving object based
on the stage size of the SWF.

4.1.3 Repositioning the wall due to dynamic text margin

At this point if you test the SWF in Device Central you will see that the font size correctly adjusts
according to the stage size. However, during the animation, the moving object appears to bounce
before the text reaches the top or bottom walls.

This is due to a margin that Flash Lite adds above and below text in a dynamic textbox. This margin
makes the physical height of the moving object movieclip taller than the size of the text. There is no
formatting option to remove the top and bottom margin that Flash Lite adds for dynamic text boxes.

To work around this problem reposition the top and bottom walls so that the moving object movieclip
moves beyond the top and bottom of the screen enough so that the text reaches the edge of the
screen before bouncing.

The following lines of code calculate the size of the margin and then shift the _y position of the top
wall upward and the bottom wall downward so that both walls are now off of the visible portion of
the stage.

// adjust y position of top and bottom walls so text reaches edge of
screen before bouncing.
// text top and bottom margin increases movieclip actual height to be
taller than text height.
var margin:Number = (cool.movingobject._height - basestyle.size)/2; //
calculate margin
cool.topwall._y -= margin; // shift topwall upward by size of the margin
cool.bottomwall._y += margin; // shift bottomwall downward by size of
the margin

During the animation the moving object will travel off of the stage by the amount of the margin so
that the text reaches the edge of the screen before bouncing.

 Flash Lite 2.0: Screen Saver and Wallpaper 19

Forum.Nokia.com

Figure 8: Pink lines indicate the position of walls, yellow box indicates true size of the moving object movieclip.

 Flash Lite 2.0: Screen Saver and Wallpaper 20

Forum.Nokia.com

5 Example 3: Adding visual effects

Building on the previous examples, in example 3 you will use ActionScript techniques to add more
variety to the screen saver. In this example, you will learn techniques to tile an image across the
stage. You will create tiled movieclips that display in a background layer and a foreground layer and
use the setMask() function to enable the shape of the text in the moving object to mask the
foreground layer. You will also randomly select a new word for the moving object so the shape of the
mask changes each time the screen saver plays.

Figure 9: Example 3 with tiled background and dynamic mask

5.1 Tiling a texture across the stage

Tiling a seamless texture across the stage is a useful technique because it enables you to create an
interesting visual effect that also dynamically scales to any phone screen size.

First you prepare some textures and add them to your FLA library. The
bouncinganimation_withmask.fla included in the example 3 folder of the article download contains a
number of textures in the library that you can choose from. You can also add your own texture
through the following steps:

 1. Using a graphic creation software, create a texture in JPEG or PNG format.

 2. Import your desired texture into the Flash CS3 library.

 3. Create movieclip assets in the library for each texture.

 4. Give each movieclip an ActionScript identifier so you can dynamically attach the movieclip to
the stage at run time using ActionScript.

In your class file, create a new function named createTiledMC() to tile a specified texture to cover
the entire stage. The function will place all of the tiles into a container movieclip so you can stack
layers of tiled patterns on the canvas movieclip to create masking effects.

The createTiledMC() function expects a containerName variable representing the movieclip to
hold the tiled textures, and a textureName representing the ActionScript identifier of the movieclip
containing the desired texture bitmap image from the library.

/*
create a new movieclip named by containerName variable
tile the specified texture movieclip across the containerName movieclip
return the newly created movieclip
*/

 Flash Lite 2.0: Screen Saver and Wallpaper 21

Forum.Nokia.com

private function createTiledMC(containerName:String,
textureName:String):MovieClip{

For flexibility, enable this function to dynamically change the texture during run time. The following
if/else code block determines if there is a pre-existing movieclip of the same name as the
containerName variable. If this movieclip already exists then ActionScript saves its depth in the
depth variable and removes the pre-existing movieclip, clearing its tiled textures from the stage. If
there is no pre-existing movieclip then ActionScript will store the next available depth in the depth
variable.

// remove pre-existing tiled movieclip
if(this.canvas_mc[containerName] != null){
 var depth:Number = this.canvas_mc[containerName].getDepth(); // store
the depth
 this.canvas_mc[containerName].removeMovieClip() // remove the pre-
existing tiled movieclip
} else {
 var depth:Number = this.canvas_mc.getNextHighestDepth(); // new depth
}

Next, ActionScript will create a new tilecontainer movieclip at the previously determined depth.
The depth sets a movieclip object’s vertical stacking order in relation to other movieclips in the same
parent movieclip.

// create a movieclip to hold the tiles
var tilecontainer:MovieClip =
this.canvas_mc.createEmptyMovieClip(containerName,depth);

By keeping track of the depth, you can use ActionScript to replace a pre-existing movieclip with a
new one at the same depth, preserving the stacking order of all dynamically generated movieclips on
the canvas movieclip. This prevents ActionScript from inadvertently stacking a tiled movieclip
intended to appear as a background layer, in the foreground on top of the moving object obscuring it
from view.

Now that you have created the tilecontainer moveclip, you can attach the first tile to the screen
saver.

// attach a movieclip containing the selected texture
var texture:MovieClip =
tilecontainer.attachMovie(textureName,"texture",tilecontainer.getNextHig
hestDepth(),{_x:0,_y:0});

This code attaches the moveclip asset from the library with the ActionScript identifier stored in the
textureName variable, and places it on the stage in the upper left hand corner. Next, duplicate this
texture across the stage to create a tiled effect.

The first step to tile the background is to determine how many copies of the texture you need to
create. You can think of your tiled movieclip as consisting of rows and columns of duplicated images.

// determine the number of rows and columns required to tile this
texture over the entire stage
var rows:Number =
(Math.ceil(Stage.height/tilecontainer.texture._height));
var cols:Number = (Math.ceil(Stage.width/tilecontainer.texture._width));

These two statements calculate the number of rows and columns required to cover the stage with the
selected texture based upon the dimensions of the texture compared to the dimensions of the stage.
The Math.ceil() function converts any decimals to the next highest whole number.

 Flash Lite 2.0: Screen Saver and Wallpaper 22

Forum.Nokia.com

The final step is to set up loops to tile the texture across the stage. Use a for loop to count the
number of rows and a while loop to add tiles based upon the number of columns.

// loops to tile the texture
for(var r:Number = 0; r<rows; r++){ // loop through rows
 // texture already attached in row 0 column 0
 // for first row start in second column (c1)
 var c:Number = (r==0) ? 1 : 0;
 while(c<cols){ // loop through columns
 var mcname:String = "r" + r + "c" + c; // generate a movieclip
name based upon row and column
 var xpos:Number = tilecontainer.texture._width * c;
 var ypos:Number = tilecontainer.texture._height * r;

 tilecontainer.texture.duplicateMovieClip(mcname,tilecontainer.getNext
HighestDepth(),{_x:xpos,_y:ypos});
 c++;
 }
}

You can consider the starting texture as being the first column of the first row. Before starting the
while loop ActionSript checks if r == 0, meaning the first row. If the loop is in the first row, set the
column count variable named c to 1 to start placing textures in the second column of the first row,
because you have already attached a tile to the first column of the first row.

The while loop contains the code to attach the tiles. First ActionScript will build a unique name for
the tile movieclip, based upon its row and column position, that is, “r0r1”. Then it determines the x
and y position of the next tile to be attached and finally calls the duplicateMovieClip() method
to make a copy of the texture at the new position. You can define the _x and _y properties for the
new movieclip by passing these properties in object shorthand, that is, {_x:xpos,_y:ypos} , as
the last argument of the duplicateMovieClip() method.

Finally, after creating the tilecontainer movieclip and duplicating the tile across the stage, the
function returns the tilecontainer as a movieclip to the calling function. In the next section you
will define the functions for creating a background layer and a masked layer. These functions will call
the createTiledMC() function to receive the tiled movieclip.

 // return the tiled movieclip to the calling function
 return tilecontainer;
}

5.2 Creating a tiled background layer

Now that you have created the core function for creating a tiled movieclip, you can add functions and
properties to the class to define a background layer with a tiled texture. First create a private read-
only property to store the texture used for the background. Add code to define the property and its
corresponding getter function.

/*
read only property, texture for background
*/
private var __backgroundtexture:String;

public function get backgroundtexture():String{
 return this.__backgroundtexture;
}

Next, create the backgroundlayer property which is a movieclip representing the tiled texture to
be used in the background layer.

 Flash Lite 2.0: Screen Saver and Wallpaper 23

Forum.Nokia.com

/*
movieclip containing background image
*/
public var backgroundlayer:MovieClip;

Finally, define a function, createBackgroundLayer() that expects a texture name. This function
assigns the texture name to the _backgroundtexture property and then calls the
createTileMC() function to build the tiled movieclip, and assign this movieclip to the
backgroundlayer property.

/*
creates the tiled backgroundlayer movieclip
*/
public function createBackgroundLayer(asset:String){
 this.__backgroundtexture = asset;
 this.backgroundlayer = this.createTiledMC("backgroundmc",asset);
}

In your FLA ActionScript add a line of code to create the tiled background movieclip layer. The value
drops1 is the ActionScript identifier of a movieclip in the library containing the texture you want to
tile onto the backgroundlayer movieclip.

// FLA ActionScript to create tiled layer for the backgroundlayer
property.
cool.createBackgroundLayer("drops1");

An important issue to be aware of is that the createTileMC() function will build the
backgroundlayer movieclip at the next highest depth on the canvas movieclip. It does not
automatically place the backgroundlayer movieclip in the background behind other assets on the
canvas. This line of code must occur before you call setMovingObject(), so that the movingobject
movieclip is built in a depth higher than the backgroundlayer movieclip. Otherwise the
backgroundlayer movieclip may appear in front of the movingobject,obscuring it from view.

5.3 Creating a tiled masked layer

Follow the same steps for the backgroundlayer movieclip to create the class functions and
properties to build the maskedlayer movieclip.

/*
read only property, texture for mask
*/
private var __maskedtexture:String;

public function get maskedtexture():String{
 return this.__maskedtexture;
}

/*
movieclip containing tiled image to be masked by moving object
*/
public var maskedlayer:MovieClip;

/*
creates the tiled maskedlayer movieclip
*/
public function createMaskedLayer(asset:String){
 this.__maskedtexture = asset;
 this.maskedlayer = this.createTiledMC("maskedmc",asset);
}

 Flash Lite 2.0: Screen Saver and Wallpaper 24

Forum.Nokia.com

To properly create the mask effect you must build the backgroundlayer movieclip first, followed
by the maskedlayer movieclip, and lastly the movingobject movieclip. The following code
demonstrates the order in which you must build your screen saver assets to enable the mask effect
work as you intend.

// set these assets in proper screen stacking order
cool.createBackgroundLayer("drops1"); // build first, in background
cool.createMaskedLayer("water2"); // build second, in foreground
cool.setMovingObject("textmc",Stage.width/2,Stage.height/2); // build
last, on top

Once you have created all of these assets and stacked them in the proper order you can apply the
movingobject movieclip as a mask using the MovieClip.setMask() method.

5.3.1 Understanding dynamic masks

A mask displays a portion of an image from a layer beneath the mask, in the shape of the mask. It is
literally like placing a mask on a person’s face, you only see the portions of the face where there are
holes in the mask. In example 3 you are using the shape of the text to mask the maskedlayer tiled
texture.

Figure 10: Text on top of tiled pattern

Figure 11: Text applied as a mask on top of tiled pattern

Flash Lite 2.0 supports dynamic masks which are movieclips that act as a mask and can move on
screen and be manipulated by ActionScript. To create a dynamic mask use the
MovieClip.setMask() method. To apply the movingobject movieclip as a mask for the

 Flash Lite 2.0: Screen Saver and Wallpaper 25

Forum.Nokia.com

maskedlayer movieclip, pass the movingobject movieclip as an argument to the setMask()
method of the maskedlayer movieclip.

// FLA ActionScript to mask the maskedlayer movieclip with the
movingobject movieclip
cool.maskedlayer.setMask(cool.movingobject); // set the mask

As the mask moves around on the screen it shows the varied qualities of the “watery” texture in the
maskedlayer, creating a rippling water effect.

5.4 Randomizing the text

As a final touch for your screen saver, add some code to randomly select a word from a list and make
this the text for the msg textfield in the movingobject. Each time Flash Lite plays the screen saver
animation it will display with a different word adding more variety through randomness.

First create an array called messages to hold the different words for the msg textfield.

// define a list of cool messages
// change text before applying text formatting
var messages:Array =
["COOL","POOL","SWIM","dive!","splash!","sploosh!"];
cool.movingobject.msg.text = messages[random(messages.length)]; // get a
random message

You can use the random()function to randomly select an index from the array and assign the
corresponding word to the text property of the msg textfield. The random() function generates a
number between 0 and the number you pass – 1. In this case, you pass the length of the messages
array, which is 6, to the random() function and it will return a value between 0 and 5, which
corresponds to the index range of the array.

Note: The random function is deprecated Flash Lite 2.0; however, it is a simple and well suited option
for selecting a random index for an array.

In your FLA ActionScript code, make sure you assign the new word to the text property of the msg
textfield before you change the font size. Otherwise, Flash Lite will reset the text formatting of the
msg textfield to the font size of 50 point that you originally assigned in the property inspector.

 Flash Lite 2.0: Screen Saver and Wallpaper 26

Forum.Nokia.com

6 Summary

You have now completed a screen saver that can dynamically resize itself to whatever stage size you
publish it to. It adapts the size of all assets of the screen saver including the walls, the moving object,
the tiled background, and the tile for the masked layer. In addition you have added visual interest
with a dynamic mask and randomized text. By building the code in an object oriented manner you
can quickly develop a new screen saver or wallpaper animation and easily customize its behavior by
extending the class or through ActionScript in your FLA.

 Flash Lite 2.0: Screen Saver and Wallpaper 27

Forum.Nokia.com

7 About the author

Hayden Porter, the author of this document, is a Flash Lite developer with a special interest in
developing multimedia content for mobile devices. He has written extensively on the subject of
developing mobile content, including white papers for leading mobile device manufacturers and
articles for publications such as Electronic Musician Magazine, Music Education Technology Magazine,
and DevX.com.

For more information, see http://www.aviarts.com.

 Flash Lite 2.0: Screen Saver and Wallpaper 28

http://www.aviarts.com/

Forum.Nokia.com

8 Evaluate this resource

Please spare a moment to help us improve documentation quality and recognize the resources you
find most valuable, by rating this resource.

 Flash Lite 2.0: Screen Saver and Wallpaper 29

http://www.forum.nokia.com/main/1%2C%2C90%2C00.html?surveyId=67bd56d7-6a12-4486-8afa-80c079b81665/Flash_Lite_2_0_Screen_Saver_and_Wallpaper_v1_0_en.pdf

	1 Introduction
	2 Flash Lite 2.0 standby screen animation support
	3 Example 1: Classic bouncing animation screen saver
	3.1 Planning the project
	3.2 Creating a new ActionScript class file
	3.3 Creating the BouncingAnimation.as class
	3.3.1 Specifying the canvas movieclip
	3.3.2 Defining the boundaries of the screen
	3.3.3 Creating the wall movieclips
	3.3.4 Attaching the moving object
	3.3.5 Initiating the animation
	3.3.6 Moving the object
	3.3.7 Detecting a collision
	3.3.8 Setting the animation speed

	3.4 Configuring an animation

	4 Example 2: Scaling the size of the moving object
	4.1 Setting the font size
	4.1.1 Using the TextField autoSize property
	4.1.2 Using the TextFormat size property
	4.1.3 Repositioning the wall due to dynamic text margin

	5 Example 3: Adding visual effects
	5.1 Tiling a texture across the stage
	5.2 Creating a tiled background layer
	5.3 Creating a tiled masked layer
	5.3.1 Understanding dynamic masks

	5.4 Randomizing the text

	6 Summary
	7 About the author
	8 Evaluate this resource

