
Tutorial

March 2007

Getting Started with Sound in
Macromedia™ Flash Lite™ 1.1
in Sony Ericsson phones

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Preface

About this tutorial

This tutorial was authored by Hayden Porter, www.aviarts.com. Hayden is a Flash mobile developer and
musician with a special interest in integrating sound and music with mobile devices. He has written exten-
sively on the subject of interactive sound and is the editor for www.sonify.org, a leading online resource
for information about interactive sound for the web and mobile.

This tutorial describes how to get started using sound in Macromedia™ Flash Lite™ 1.1 content for Sony
Ericsson phones.

The reader should have intermediate knowledge of using ActionScript and familiarity with sound terminol-
ogy. Knowledge of Macromedia™ Flash™ 4 scripting is also helpful but not essential.

Sony Ericsson Developer World

On www.sonyericsson.com/developer, developers find documentation and tools such as phone White
papers, Developers guidelines for different technologies, SDKs (Software Development Kits) and relevant
APIs (Application Programming Interfaces). The Web site also contains discussion forums monitored by
the Sony Ericsson Developer Support team, an extensive Knowledge base, Tips and tricks, example code
and news.

Sony Ericsson also offers technical support services to professional developers. For more information
about these professional services, visit the Sony Ericsson Developer World Web site.
2 March 2007

This document is published by Sony Ericsson
Mobile Communications AB, without any
warranty*. Improvements and changes to this text
necessitated by typographical errors, inaccuracies
of current information or improvements to
programs and/or equipment, may be made by
Sony Ericsson Mobile Communications AB at any
time and without notice. Such changes will,
however, be incorporated into new editions of this
document. Printed versions are to be regarded as
temporary reference copies only.

*All implied warranties, including without limitation
the implied warranties of merchantability or fitness
for a particular purpose, are excluded. In no event
shall Sony Ericsson or its licensors be liable for
incidental or consequential damages of any
nature, including but not limited to lost profits or
commercial loss, arising out of the use of the
information in this document.

These Developers guidelines are published by:

Sony Ericsson Mobile Communications AB,
SE-221 88 Lund, Sweden

Phone: +46 46 19 40 00
Fax: +46 46 19 41 00
www.sonyericsson.com/

© Sony Ericsson Mobile Communications AB,
2007. All rights reserved. You are hereby granted
a license to download and/or print a copy of this
document.
Any rights not expressly granted herein are
reserved.

First edition (March 2007)
Publication number: EN/LZT 108 9433 R1A

www.sonyericsson.com/developer

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Document conventions

Abbreviations

Typographical conventions

Code is written in Courier font: <html>..</html>

Trademarks and acknowledgements

Macromedia, Flash Lite and Flash are trademarks or registered trademarks of Adobe Systems Incorpo-
rated.

Microsoft and Microsoft Windows are either registered trademarks or trademarks of Microsoft Corpora-
tion in the United States and/or other countries.

Cakewalk and Cakewalk Music Creator are trademarks or registered trademarks of Twelve Tone Systems,
Inc.

Beatnik and Beatnik Mobile Sound Builder are trademarks or registered trademarks of Beatnik, Inc.

QuickTime is a trademark of Apple Inc., registered in the U.S. and other countries.

i-mode is a trademark or registered trademark of NTT DoCoMo, Inc.

Other product and company names mentioned herein may be the trademarks of their respective owners.

MIDI Musical Instrument Digital Interface

SMF Standard MIDI File

SP-MIDI Scalable Polyphony MIDI

SMAF Synthetic music Mobile Application Format developed by Yamaha

MFi Melody for i-mode™

WAV Uncompressed audio format common to the Microsoft® Windows® platform

MP3 Audio encoded with MPEG layer 3
3 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Document history

Change history

2007-03-13 Version R1A First Edition published on Developer World
4 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1

5 March 2007

Contents

Introduction ...6
What you need ..6
About Flash Lite ..6
Tutorial ...7
Introduction to MIDI ..7

About MIDI sequencers ...8
MIDI and Sony Ericsson phones ...9
Testing MIDI sounds ..10

Integrating MIDI with Flash Lite ...11
Embedding MIDI in SWF ...12
ActionScript sound control ..13
Synchronizing MIDI and animation ..14

Target Ball game example ..15
MIDI sound effect design ...15
Sound on and off control ...19
Synchronizing MIDI and animation ..20

Conclusion ...21
Appendix 1

Getting device volume ..22
Appendix 2

Sound capability properties ...23
Appendix 3

GM instrument bank ...24
Appendix 4

GM percussion bank ...27

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Introduction

What you need

You should have a copy of Macromedia™ Flash™ IDE Professional version to create Flash Lite 1.1 com-
patible SWFs and the Flash Lite 1.1 CDK, available from the Adobe mobile site at
www.adobe.com/devnet/devices/development_kits.html. If you intend to edit pre-existing MIDI files or
create your own MIDI music or sound effects, you should also have MIDI sequencing software.

The "Getting Started with Sound in Adobe Flash Lite 1.1" download includes example SWFs, FLAs and
MIDI files that you can examine while reading the tutorial. In addition, you should review the other Getting
started tutorials for Flash Lite, the Sony Ericsson Developer Guidelines for Macromedia™ Flash Lite™ 1.1,
and the Sony Ericsson Developer Guidelines for Ringtones. You should also have a Flash Lite 1.1 enabled
Sony Ericsson phone to listen to MIDI files and evaluate sound quality.

About Flash Lite

An important difference between Flash Lite for mobile devices and Flash for desktop PCs is that Flash Lite
supports two different sound systems. Some versions of Flash Lite 1.1 support "native audio" features
similar to the desktop PC player. Others support "device sound", a new feature enabling Flash Lite to play
sound in formats supported by a phone operating system. Sony Ericsson Flash enabled phones only sup-
port “cached device sound”, which means that sounds to be played, first have to be stored in the phone,
before it can be redirected to the audio player.

In the device sound implementation, Flash Lite does not play sound on its own. Instead, it interfaces with
the phone operating system to play sound. A phone operating system may support a variety of sound for-
mats, however Adobe intended Flash Lite 1.1 to interact with MIDI, Yamaha SMAF or i-mode MFi,
depending upon an operating system support for these formats.

Flash Lite 1.1 for the Sony Ericsson OSE platform supports sound in the MIDI format through the device
sound implementation. MIDI is probably the most commonly used device sound format world-wide and is
also the most widely supported sound format for Flash Lite. Understanding how to use MIDI with Flash
Lite ensures that our content is compatible with the widest variety of phones. Sony Ericsson i-mode
phones also support the MFi sound format.

In this tutorial we focus on the sound capabilities of Flash Lite 1.1 for the Sony Ericsson OSE phone plat-
form. In addition, we can apply these concepts to Flash Lite 1.1 for Sony Ericsson i-mode phones, which
also support the MIDI format.
6 March 2007

www.adobe.com/devnet/devices/development_kits.html

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Tutorial

Introduction to MIDI

Many developers are familiar with using WAV and MP3 formats in the desktop version of Flash, but may
be new to the MIDI format. Unlike digitized sound formats such as WAV or MP3, a MIDI file contains music
performance data instead of audio. A common analogy is that a MIDI file is like an old-fashioned player
piano roll, essentially a timeline listing a musician's decisions and actions during a performance such as
the pitch, duration, time, volume and assigned synthesizer sound of a note played.

Representing sound in this manner has several advantages:

• MIDI file size is very small compared to a MP3 recording
• MIDI playback can be less CPU intensive than decoding a MP3 file
• An application can generate or manipulate MIDI data in real time for highly interactive sound tracks.

A phone plays a MIDI file through a sequencer that sends MIDI commands directly to a synthesizer to
generate sound using the built-in sound banks of the phone.

The General MIDI (GM) specification defines two sets of sounds, that all GM compatible synthesizers must
support:

• "GM instrument bank" - 128 common instruments
• "GM percussion bank" - 47 percussion instruments.

Almost all phones on the market, including all Flash enabled Sony Ericsson phones, have a GM compliant
synthesizer and support these two sound banks, giving us a total of 175 built-in sounds to work with. For
GM sound bank listings, see “Appendix 3 GM instrument bank” on page 24.

Included with the tutorial download is a Flash Lite 1.1 "MIDI Sound Browser" SWF application to browse
through all 175 sounds on your phone, and compare sounds on different Flash Lite enabled phones. Each
MIDI file is a one note or chord example played using one of the 175 synthesizer sounds. The download
includes the SWF and 175 MIDI files.

One limitation of MIDI is that its sound quality depends upon the instrument timbres in the GM sound
banks of a given phone synthesizer. One phone synthesizer can have a different sounding piano than
another so that the same piano music in a MIDI file sounds differently on different phones. However, MIDI
files played on any Sony Ericsson OSE phone sound the same or very similar because these phones share
similar instrument timbres.
7 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Another issue is that the MIDI specification does not support seamless looping. It is possible to restart a
MIDI file with ActionScript to create a repeating sound, though this inserts a pause between repeats. With
this technique we can have looping backing tracks for music that does not require rhythmically precise
loops.

Finally, while MIDI can be effective for instrumental music and sound effects, it cannot contain audio, and
is not capable of playing recorded sounds or vocal sounds. For this reason, we do not edit MIDI files in
audio editing software or convert WAV and MP3 recordings directly into the MIDI format. Instead we cre-
ate or edit MIDI files using MIDI sequencer software.

About MIDI sequencers

This is a brief introduction to using a MIDI sequencer. For more information on MIDI sequencing you
should refer to one of the many books in publication on the topic. We record, create and edit MIDI files
with a MIDI sequencer, such as the Cakewalk Music Creator™.

MIDI files consist of musical parts organized into MIDI tracks that are assigned to a MIDI channel. A MIDI
channel represents a sound. We assign a sound from the GM Instrument bank to a channel. All notes in
any track assigned to a channel play through our selected GM instrument sound. For example, we might
record right and left hand piano parts in separate tracks for convenient editing and assign both tracks to
the same MIDI channel corresponding to a piano sound.

A common way of displaying MIDI tracks is through a sequencer Piano Roll Editor screen. On this screen,
we record, enter or edit notes for a track. The piano roll editor displays notes as horizontal bars on a time-
line. Each note is a discrete event that we can manipulate. The vertical position of a note corresponds to
its pitch, its duration is the length of the bar, and its position left to right is its time in the sequence.

To use a sound from the GM percussion bank, we assign our track to MIDI channel 10. A GM compliant
synthesizer plays tracks assigned to channel 10 using sounds from the percussion bank. A synthesizer
maps each GM percussion instrument to a specific note number. We add a note to our track correspond-
8 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
ing to our desired percussion sound. For example, to create a percussion part consisting of a snare drum
followed by a bass drum, we assign our track to channel 10 and enter note #38 (D3) followed by note #35
(B2). For GM percussion bank note numbers, see “Appendix 4 GM percussion bank” on page 27.

We can further manipulate a sound using MIDI controllers. Most phone synthesizers, including Sony Eric-
sson phones, support controllers for volume, pan, modulation, and pitch bend. Modulation is an oscillat-
ing change in pitch much like a vibrato. Pitch bend is a continuous change in pitch over time. We can also
combine these different controllers for more sophisticated effects.

The MIDI controller screen displays controller data. Sequencers represent this information as a graph,
where we intuitively draw a volume, pan or pitch bend envelope over time to alter a note or group of notes.

If you are new to MIDI and not familiar with how to use a MIDI sequencer, you might start by using the
MIDI files provided in the download for sound effects or rely upon pre-made MIDI files. For certain
projects, you might enlist a musician with ringtone development experience to help you develop MIDI
music and sound effects.

Refer to the "Demo MIDI" SWF, included in the tutorial download, for examples of MIDI files with various
effects.

MIDI and Sony Ericsson phones

An important phone capability is its synthesizer polyphony, which is the maximum number of notes or
voices the synthesizer can play simultaneously. While some Sony Ericsson phones support as much as
72-note polyphony, Sony Ericsson recommends that MIDI files should not exceed 40-note polyphony for
compatibility with all of its phones. However, for most efficient performance in CPU demanding Flash Lite
applications, we may use MIDI files with even lower polyphony such as 16 voices or less.
9 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
The SP-MIDI (Scalable Polyphony MIDI) specification, defines a set of rules known as channel priority
messages. A composer adds these rules to a MIDI file to prioritize musical parts so that the phone synthe-
sizer plays the parts most essential to the composition if there are not enough CPU resources to manage
all parts. This is an issue if the MIDI file exceeds a the polyphony of a phone, a phone has a low battery
charge or is executing CPU demanding animation and sound content.

For this last reason, it is safest to use music oriented MIDI files containing SP-MIDI channel priority mes-
sages to ensure that the synthesizer can scale our music to the essential parts in case of high CPU
demands from playing both Flash Lite graphics and MIDI music simultaneously. All Sony Ericsson phones
are SP-MIDI compliant.

Dedicated SP-MIDI content authoring tools, such as Beatnik Mobile Sound Builder™, streamline the proc-
ess of adding channel priority rules to a MIDI file. These tools also analyze polyphony of a MIDI file, nor-
malize its volume, trim unnecessary MIDI data and perform other useful tasks.

Sony Ericsson phones support both SMF (Standard MIDI Format) formats 0 and 1. There is no difference
in sound between a format 0 or 1 MIDI file, though format 0 is smaller in file size, and requires less parsing
than format 1. Sony Ericsson recommends SMF format 0 for most efficient CPU usage. Most sequencers
can save MIDI in SMF format 0.

Review the Developers Guidelines for Ringtones for more information about the sound capabilities of
Sony Ericsson phones.

Testing MIDI sounds

We should test MIDI sound directly on a phone, to verify that it plays as we intend before integrating it with
Flash Lite. Our main concern is to that our MIDI sound and music project well through the phone external
speaker. We should test at loud and soft volumes, through headphones and in different places to deter-
mine how it sounds against competing sounds from the environment.

If our MIDI sound does not project well through the speaker then we may need to increase the volume of
the MIDI file. Most MIDI sequencers have a convenient means to normalize all note velocities to a louder
value. We may also choose pitch ranges that project more loudly for a given sound, or choose a different
set of sounds that project more clearly.

To test a MIDI file, we transfer it from our desktop PC computer to our Sony Ericsson phone sound or
music folder and through the phone interface navigate to the sound folder, select a sound and press the
enter button to play or stop the sound.

On Walkman series phones, we set the phone volume by first accessing the Walkman music player appli-
cation, then pressing the external volume control buttons of the phone to change volume. After setting the
volume, we return to the sound folder or Flash Lite application by closing the Walkman music player appli-
cation.

A MIDI file for Sony Ericsson phones should meet the following criteria:

• 40 note polyphony or less
• SP-MIDI channel priority rules for music oriented MIDI files
• SMF format 0 format
• Project well through the external speaker at various volumes and in different settings.
10 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Integrating MIDI with Flash Lite

Once we have a MIDI file suitable for use, we can begin the process of integrating it with Flash Lite con-
tent.

We can use MIDI sounds as backing music and sound effects in a linear animation, or as interactive
sounds that play in response to user interaction, such as a game. Flash Lite 1.1 plays a sound as soon as
the graphic playhead enters the frame containing a sound.

Flash Lite 1.1 in Sony Ericsson phones only plays one MIDI sound at a time. If we restart an already play-
ing sound, Flash Lite 1.1 stops and restarts the sound, or if we start a new sound it stops the old and
starts the new with no sound overlap.
11 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Embedding MIDI in SWF

The Flash IDE cannot directly import MIDI sounds. Instead, we import a WAV, MP3 or AIFF sound to act
as a placeholder or "proxy" sound that the IDE replaces with our MIDI file when we publish the SWF or
test it in the emulator.

Embedding a MIDI file in a Flash Lite 1.1 SWF is a four-step process:

1. First, we import a WAV, AIFF or MP3 sound into our FLA library to act as a placeholder sound, referred
to as a "proxy" sound, for the MIDI sound we intend to embed in the SWF.

2. Next, from the Library window, we open the sound properties window for our proxy sound and browse
to the location of the MIDI sound.
12 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
3. Place the proxy sound asset from the library in the frame that we want the MIDI sound to play.

4. Last, we test or publish the SWF and the IDE replaces the proxy sound in the FLA with the MIDI sound,
embedding it within the resulting SWF.

With the exception of assigning a MIDI file to a proxy sound, none of the sound settings in the Flash IDE,
such as the Sound Inspector, Sound Edit window or Sound Properties window apply to device sounds.

We can audition MIDI with Flash Lite in the desktop environment using the Flash IDE emulator. The emula-
tor plays MIDI files through the QuickTime synthesizer. Note that the instrument timbres of the QuickTime
synthesizer sound differently than those on Sony Ericsson phones and that some aspects of MIDI may not
play correctly through the QuickTime synthesizer. It is best to test Flash Lite SWF containing MIDI sounds
directly on our target phones.

ActionScript sound control

To interactively play a MIDI sound, we use ActionScript to move the playhead to the frame containing the
sound. We call the stopAllSounds() command to stop a MIDI sound.

For example, when we press the 1 key, the code below moves the playhead to the frame labeled "sound"
in the soundmc movie clip, and the Flash Lite player plays the sound. When we press the 2 key, Flash Lite
stops the MIDI sound.
13 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
// play the frame containing a MIDI sound
on(keyPress "1") {

tellTarget("soundmc"){gotoAndPlay("sound");}
}

// stop MIDI sounds
on(keyPress "2") {

stopAllSounds();
}

Refer to the "Control Sound" SWF and FLA, included in the download, for an example of how we might
set up a FLA for interactive MIDI sound control. Press the 1 key to start or restart sound, and the 2 key to
stop sound.

Synchronizing MIDI and animation

Flash Lite 1.1 has no built-in means to resynchronize MIDI sound and animation, though it is possible to
achieve a form of synchronization by starting both animation and MIDI sound at the same time. This tech-
nique is known as "trigger" synch.

Flash Lite 1.1 briefly pauses animation and ActionScript when starting a MIDI sound. Once the sound
starts, Flash Lite 1.1 resumes playback. This may have an impact on the flow of animation or game play.
To minimize the effect of the pause, we should play MIDI sounds at natural pause points in an animation.
The duration of the pause may be more noticeable on some phones than others.

Refer to the "Sound Interrupt" SWF and FLA, included in the download, to assess the duration of the
pause on your Flash Lite phone. This application uses a looping movie clip to play a sound every 20
frames and display elapsed time between frames including the pause after playing sound.

We have two approaches to trigger synch MIDI sound and animation. One approach is to start a single
MIDI file containing a sequence of sound effects at the same time as an animation, so that each individual
sound effect in the MIDI file plays at the same time as key frames in the animation.

This minimizes the number of pauses by reducing the number of MIDI files that Flash Lite 1.1 attempts to
play. The disadvantage is that there is no guarantee that Flash Lite 1.1 animation and MIDI sound remain
in synch. While MIDI always plays at a constant rate, the Flash Lite 1.1 frame rate can vary depending
upon the time it takes to render a graphic or execute ActionScript for a given frame. Consequently, sound
and animation can drift out of synch. This approach is most effective for synchronizing short animations
with a short series of sound effects because it is less likely that the frame rate varies significantly over a
short period of time.

The other approach is to distribute a series of MIDI files containing single sound effects throughout the
frames of an animation so that Flash Lite 1.1 plays sounds at key frames of the animation.

In this case, sounds always play at the same time as key frames in the animation, regardless of a varying
frame rate. The problem is that Flash Lite 1.1 could pause frequently if it plays many MIDI files in a short
period of time, interrupting the flow of animation.
14 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
For the Sony Ericsson OSE platform, Flash Lite 1.1 runs within the web browser. The browser implemen-
tation of Flash Lite may render graphics at a slower rate than the standalone version of Flash Lite or the
Flash Lite test player in the desktop IDE. MIDI sound and animation that appear in synch in the desktop
IDE test player are not likely to synch on the actual device because the frame rate is slower. We need to
test and verify sound and animation synchronization on the actual device.

Target Ball game example

A simple game called "Target Ball" is included in the download to demonstrate using MIDI sound effects
in a Flash Lite 1.1 game for Sony Ericsson phones. The goal of the game is to set the correct spring ten-
sion to launch the ball into the target. To play the game, you press the up and down buttons to set the
spring tension and the enter button to launch the ball or try again. You might try playing the game on a
Sony Ericsson phone, with the browser set to display in full screen, while reading through the tutorial to
hear the example sound effects.

MIDI sound effect design

The target ball game has five MIDI sound effects.

1. Launcher spring changing tension

2. Launcher spring release sound

3. Ball falling whistling sound

4. Ball landing outside of target

5. Ball landing within target

During the sound design and game development process I tested each MIDI file on W300i, W600i and
W850i Sony Ericsson phones to verify that each phone had similar sounds and consistently synchronized
sound with Flash Lite animation.

Launcher spring changing tension
The first sound effect we hear corresponds to the change in the tension of the launcher spring as we press
the up or down buttons.

I selected the Xylophone sound from the GM instrument bank (program #14) because it is a metallic
pitched percussion instrument with a short ring over producing a sound sufficient for the tightening of a
coiled spring.

I created a short ascending two-note music effect, with the first note ringing over the second to create the
reverberation. Then, I produced five versions of this effect transposing each to a higher pitch to represent
five levels of increasing spring tension.
15 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Launcher spring release
The second sound effect is the release of a tightly wound spring. I chose the Vibraslap sound from the GM
percussion bank (note #58) because it sounds like a spring vibrating.

I assigned a track in my MIDI file to channel 10 and added the note Bb4 (note #58) corresponding to the
vibraslap sound, with a duration suitable for the effect. I also applied an ascending pitch bend to enhance
the sound of the spring being released.
16 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Ball falling through the air
The ball falling sound requires a "whistling" timbre that changes in pitch from high to low while growing
louder as the ball approaches the ground. For this effect, I selected the flute sound from the GM instru-
ment bank (program #74) because it provides an effective whistle-like timbre when played at high pitch. I
shaped the change in pitch and volume over time using the pitch bend and volume controller.

First, I selected a high-pitched note (E8) with a suitable duration for the effect. Then, I created the pitch
bend and volume change contours.

Normally a synthesizer defaults to a pitch bend range of two semitones above and below a sound's start-
ing pitch, which is not enough variation in pitch for this sound effect. Fortunately, we can reprogram a syn-
thesizer pitch bend range by including a RPN (Registered Parameter Number) command in a MIDI file.
(Read your MIDI sequencer documentation for instructions on how to change pitch bend range.) Once I
created a suitable pitch bend range in the phone synthesizer, I was able to aurally experiment with differ-
ent changes until I found the most effective pitch bend contour for the effect.
17 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
To emulate the sound of an object growing in volume as it approaches the ground, I started the volume
controller at 0, just after the flute note starts, and gradually increased to a louder volume level, about 90%
through the note duration, then rapidly decreased volume to 0 at the end.

Starting the volume change after the sound starts, hides the attack of the flute. Our ears tend to identify
instrument sounds by their attack. By removing the attack, we only hear the remaining "whistle" timbre
and do not recognize the sound as a flute. Reducing the volume to 0 near the end of the effect, builds
expectation, just before hearing our next sound effect, the "impact" sound.

Ball impacting outside of the target
For this effect, I selected the gunshot sound from the GM instrument bank (program #128) and set it to
play at a low pitch so that it sounds more like a short explosion or heavy thud. I sequenced both the ball
falling whistle sound effect and the impact sound in a single MIDI file for integration with Flash animation.

Ball landing inside of the target
Finally, I needed a sound indicating success when the ball lands inside the target. Success sounds in a
game generally have a positive quality, which we often associate with major keys in music. I created a
short musical passage of a major chord played by the steel drum sound from the GM instrument bank
(program #115), separating the notes in a harp like strum. I added this bit of music to the end of the ball
falling whistle sound effect to make a second MIDI file specifically for the sound effect of the ball landing
within the target.

In total, I created eight MIDI files for the project; five MIDI files corresponding to changes in the launcher
spring tension, one for the spring release sound effect and two combining the ball falling whistle sound
effect with the impact sound, or the musical chord representing the ball landing inside the target. These
eight MIDI sound effects added only 6KB to the SWF file size.
18 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Sound on and off control

For games, it is a common practice to provide an option to turn sound on or off because there are times
when it is not appropriate for a phone to play sound. Normally we synchronize sound and animation by
placing them in the same movie clip, however this makes it impossible to play animation without sound.

For more flexibility, I separated sound and animation into independent movie clips so that animation can
play with or without sound. If a user has sound turned on, then ActionScript plays the sound movie clips in
addition to the animation, otherwise ActionScript only plays the animation.

For the sound on and off user interface, I created button code to toggle the variable "sndplay" to 1 for
sound on or 0 for sound off when the user presses the phone 1 key. The code also updates the interface
to display sound status.

// code for sound on/off button
on(keyPress "1"){

// sound is on, disable sound
if(getProperty("sndtoggle",_currentframe) == 1){

sndplay = 0; // sound control variable off
stopAllSounds(); // stop any currently playing sound
tellTarget("sndtoggle"){gotoAndStop(2);} //display sound off graphic

}

// sound is off, enable sound
else {

sndplay = 1; // sound control variable on
tellTarget("sndtoggle"){gotoAndStop(1);} // display sound on graphic

}
}

I used if – then statements to check the value of the sndplay variable to determine whether or not to
play a sound. For example, code below determines playback of the spring release sound movie clip.

// control playback of spring release sound movie clip
if(/:sndplay == 1){ // sound is on

// play spring release sound movie clip
//frame 2 contains the sound
tellTarget("/springreleasesnd"){gotoAndPlay(2);}

}

// always play spring release animation
tellTarget("/launcher"){gotoAndPlay("launch");}

If sndplay has the value 1, then ActionScript plays the spring release sound and animation simultane-
ously. If the user turns off sound, then sndplay has a value of 0, and ActionScript only plays the anima-
tion movie clip.
19 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Synchronizing MIDI and animation

Both the spring tension change and spring release animations are single frame graphics that change when
a user presses a key. I used code similar to the previous example to trigger synch these sound and anima-
tion movie clips.

The ball falling whistle and impact sound effect sequence required more planning because the whistle
sound effect begins playing before the ball falling animation starts and the impact sound must play when
the ball animation reaches the ground.

I first used separate MIDI files, with the whistle sound effect starting in a frame before the ball falling ani-
mation and the impact sound in same frame as the graphic impacting the ground to synchronize sound
and animation. However, playing consecutive MIDI files caused the Flash Lite player to introduce too
much pause in the animation and between the sound effects.

To work around this problem, I sequenced the effects into a single MIDI file. This approach provided more
control over sound effect timing and avoided Flash Lite player pauses. Flash Lite synchronized the impact
sound and graphic in a consistent manner on the three devices that I tested on.
20 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Conclusion

MIDI can be an effective sound format for Flash Lite content for Sony Ericsson phones. We can use MIDI
for sound effects, user interface sounds, music, or repeating backing tracks in animations, games and
applications. The MIDI format is the most widely supported sound format for Flash Lite and its small file
size and CPU efficiency are important for optimal performance on mobile devices and for delivering con-
tent over the air.

As we have learned, the process of creating MIDI sounds for Flash Lite phones is different than using WAV
or MP3 sounds in Flash for the desktop player. We do not convert WAV sounds into MIDI and do not edit
MIDI using sound editing software. Instead, all MIDI music and sound effects are based upon the 175
built-in sounds of a phone synthesizer. We can use pre-existing MIDI files or create our own using a MIDI
sequencer. We may also use a SP-MIDI authoring tool to prepare sounds for optimal performance on
phones.

To integrate sound and animation, we need to plan ahead and work within the limits of the Flash Lite 1.1
device sound implementation. We develop our Flash Lite content to play only one sound at a time and rely
upon trigger sync to synchronize sound and animation.

It is important that we thoroughly test our MIDI sounds and Flash Lite content on all target devices to
make sure that sounds project well through the external speaker, and that sound and Flash Lite animation
play as we intend.

Mobile devices impose limitations on all aspects of Flash Lite development, including sound. However,
armed with a thorough understanding of sound capabilities and limitations, we can develop creative Flash
Lite 1.1 content containing sound for Sony Ericsson phones.
21 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Appendix 1
Getting device volume

Flash Lite 1.1 has a special set of commands called "FSCommand2" functions that return information
about or interact with a device. Flash Lite 1.1 for Sony Ericsson phones support FSCommand2 functions
to get a phone's current volume and its maximum allowed volume. Note that it is not possible to set vol-
ume using Flash Lite 1.1 ActionScript.

// FSCommand2 to get volume
maxvol = FSCommand2("GetMaxVolumeLevel"); // maximum allowed volume
currentvol = FSCommand2("GetVolumeLevel"); // current volume

Sony Ericsson phones default to approximately 50% volume at start up and have a maximum allowed vol-
ume of 100%. If sound is an important feature of our Flash Lite content, we may need to check that the
phone volume is set to an acceptable level to project our sound clearly. If the volume is too low, we can
display a message requesting that the user to increase volume to a certain level.

// check phone's current volume
currentvol = FSCommand2("GetVolumeLevel");

if(currentvol == 0){ // phone volume at 0
textbox = "Phone volume is set to 0. Please set volume to 50%.";

}

Read the Adobe Flash Lite 1.1 CDK for more information about FSCcommand2 functions.
22 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Appendix 2
Sound capability properties

To enable developers to get information about a given Flash Lite device, Adobe created a set of read only
global properties that provide information about the device including its sound capabilities.

There are six sound capability properties.

• _capCompoundSound has value of 1 if the device supports compound sound. A compound sound is a
sound bundle containing different device sound formats

• _capMFi has value of 1 if the device supports the i-mode MFi format
• _capMIDI has value of 1 if the device supports the MIDI format
• _capSMAF has value of 1 if the device supports the Yamaha SMAF format
• _capStreamSound has the value of 1 if the device supports stream synch sounds in the native audio

implementation.

Sony Ericsson OSE phones support MIDI and compound sound formats and should return 1 for
_capMIDI and _capCompoundSound, and 0 for the other sound properties. We can use these variables
to get information about a phone during the development phase or inform a user about the sound limita-
tions of a phone. We do not need to use a target path to access the value of global properties.

// notify user that a Sony Ericsson phone does not support sound
// for a game containing stream synch sounds
if(_capStreamSound < 1){ // phone does not support stream synch sounds

// print a message in a text box
textbox = "Game sound is not compatible with this phone.";

}

Read the Adobe Flash Lite 1.1 CDK for more information about the capabilities table global properties.
23 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Appendix 3
GM instrument bank

Prog # Instrument Prog # Instrument

Pianos Reeds

1 Acoustic Grand Piano 65 Soprano Sax

2 Bright Acoustic Piano 66 Alto Sax

3 Electric Grand Piano 67 Tenor Sax

4 Honky-tonk Piano 68 Baritone Sax

5 Electric Piano 1 69 Oboe

6 Electric Piano 2 70 English Horn

7 Harpsichord 71 Bassoon

8 Clavi 72 Clarinet

Chromatic percussion Pipes

9 Celesta 73 Piccolo

10 Glockenspiel 74 Flute

11 Music Box 75 Recorder

12 Vibraphone 76 Pan Flute

13 Marimba 77 Blown Bottle

14 Xylophone 78 Shakuhachi

15 Tubular Bells 79 Whistle

16 Dulcimer 80 Ocarina

Organs Synth leads

17 Drawbar Organ 81 Lead 1 (square)

18 Percussive Organ 82 Lead 2 (sawtooth)

19 Rock Organ 83 Lead 3 (calliope)

20 Church Organ 84 Lead 4 (chiff)

21 Reed Organ 85 Lead 5 (charango)

22 Accordion 86 Lead 6 (voice)

23 Harmonica 87 Lead 7 (fifths)

24 Tango Accordion 88 Lead 8 (bass + lead)
24 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Guitars Synth pads

25 Acoustic Guitar (nylon) 89 Pad 1 (new age)

26 Acoustic guitar (steel) 90 Pad 2 (warm)

27 Electric Guitar (Jazz) 91 Pad 3 (polysynth)

28 Electric Guitar (clean) 92 Pad 4 (choir)

29 Electric Guitar (muted) 93 Pad 5 (bowed)

30 Overdriven Guitar 94 Pad 6 (metallic)

31 Distortion Guitar 95 Pad 7 (halo)

32 Guitar Harmonics 96 Pad 8 (sweep)

Basses Synth effects

33 Acoustic Bass 97 Fx1 (rain)

34 Electric Bass (finger) 98 Fx2 (soundtrack)

35 Electric Bass (pick) 99 Fx3 (crystal)

36 Fretless Bass 100 Fx4 (atmosphere)

37 Slap Bass 1 101 Fx5 (brightness)

38 Slap Bass 2 102 Fx6 (goblins)

39 Synth Bass 1 103 Fx7 (echoes)

40 Synth Bass 2 104 Fx8 (sci-fi)

Solo strings Ethnic

41 Violin 105 Sitar

42 Viola 106 Banjo

43 Cello 107 Shamisen

44 Contrabass 108 Koto

45 Tremolo Strings 109 Kalimba

46 Pizziano Strings 110 Bag pipe

47 Orchestral Harp 111 Fiddle

48 Timpani 112 Shanai

Prog # Instrument Prog # Instrument
25 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Ensemble Percussive sounds

49 String Emsemble 1 113 Tinkle Bell

50 String Emsemble 2 114 Agogo

51 Synth String 1 115 Steel Drums

52 Synth String 2 116 Woodblock

53 Choir Aahs 117 Taiko Drum

54 Voice Oohs 118 Melodic Tom

55 Synth Voice 119 Synth Drum

56 Orchestra Hit 120 Reverse Cymbal

Brass Sound effects

57 Trumpet 121 Guitar Fret Noice

58 Trombone 122 Breath Noise

59 Tuba 123 Seashore

60 Muted Trumpet 124 Bird Tweet

61 French Horn 125 Telephone Ring

62 Brass Section 126 Helicopter

63 Synth Brass 1 127 Applause

64 Synth Brass 2 128 Gunshot

Prog # Instrument Prog # Instrument
26 March 2007

Tutorial | Getting Started with Sound in Macromedia™ Flash Lite™ 1.1
Appendix 4
GM percussion bank

Key # Percussion sound Key # Percussion sound

35 Acoustic Bass Drum 59 Ride Cymbal2

36 Bass Drum 1 60 Hi Bongo

37 Side Stick 61 Low Bongo

38 Acoustic Snare 62 Mute Hi Conga

39 Hand Clap 63 Open Hi Conga

40 Electric Snare 64 Low Conga

41 Low floor Tom 65 High Timbale

42 Closed Hi-Hat 66 Low Timbale

43 High Floor Tom 67 High Agogo

44 Pedal Hi-Hat 68 Low Agogo

45 Low tom 69 Cabasa

46 Open Hi-Hat 70 Maracas

47 Low-Mid Tom 71 Short Whistle

48 Hi-Mid Tom 72 Long Whistle

49 Crash Cymbal 1 73 Short Guiro

50 High Tom 74 Long Guiro

51 Ride Cymbal 1 75 Clavas

52 Chinese Cymbal 76 Hi Wood Block

53 Ride Bell 77 Low Wood Block

54 Tambourine 78 Mute Cuica

55 Splash Cymbal 1 79 Open Cuica

56 Cowbell 80 Mute Triangle

57 Crash Cymbal 2 81 Open Triangle

58 Vibraslap
27 March 2007

	Preface
	About this tutorial
	Sony Ericsson Developer World
	Document conventions
	Abbreviations
	Typographical conventions

	Trademarks and acknowledgements
	Document history

	Contents
	Introduction
	What you need
	About Flash Lite

	Tutorial
	Introduction to MIDI
	About MIDI sequencers
	MIDI and Sony Ericsson phones
	Testing MIDI sounds

	Integrating MIDI with Flash Lite
	Embedding MIDI in SWF
	ActionScript sound control
	Synchronizing MIDI and animation

	Target Ball game example
	MIDI sound effect design
	Sound on and off control
	Synchronizing MIDI and animation

	Conclusion
	Appendix 1 Getting device volume
	Appendix 2 Sound capability properties
	Appendix 3 GM instrument bank
	Appendix 4 GM percussion bank

