

Nokia s 60 WRT 1.0 Po dcast Applicatio n

F O R U M N O K I A

Version 1.0; August 4, 2009

WRT 1.0

Nokia s60 WRT 1.0 Podcast Application 2

Forum.Nokia.com

Copyright © 2007 Nokia Corporation. All rights reserved.

Nokia and Forum Nokia are registered trademarks of Nokia Corporation. Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. Other product and company names mentioned herein may be trademarks or trade names of
their respective owners.

Disclaimer

The information in this document is provided “as is,” with no warranties whatsoever, including any warranty of merchantability, fitness
for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample. This document is provided
for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of
information presented in this document. Nokia Corporation does not warrant or represent that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this specification at any time, without notice.

License

A license is hereby granted to download and print a copy of this specification for personal use only. No other license to any other
intellectual property rights is granted herein.

Nokia s60 WRT 1.0 Podcast Application 3

Forum.Nokia.com

Contents

1 Introduction ...6

1.1 Device Compatibility ... 6

1.2 Before you begin .. 6

2 Developing a WRT application ..6

2.1 Using the Nokia SDK emulators ... 7

2.1.1 Installing applications with the emulator ... 7

2.1.2 Testing applications with the emulator .. 7

2.2 Testing applications on a device .. 8

2.3 Using the Nokia WRT plug-in for Aptana Studio .. 8

2.4 Preparing an application icon ... 8

2.5 About the Nokia WRTKit framework .. 8

2.6 Extending WRTKit .. 8

3 Planning the application ... 10

3.1 User interface ... 10

4 Initiating the application ... 12

5 Managing WRTKit controls .. 13

5.1 Understanding controls on the home screen ... 13

5.2 Checking for first visit to the home screen ... 14

5.3 Checking for changes to the favorite podcast list ... 14

5.4 Creating the “view categories” and “read help” button ... 15

5.5 Removing the previous favorites menu .. 15

5.6 Building a new favorites menu ... 15

6 Navigating through menu screens.. 16

6.1 Understanding the Listener model ... 16

6.2 Processing the menu selection .. 17

7 Accessing data and sound .. 17

8 Displaying podcast categories .. 17

8.1 Loading OPML data ... 18

8.2 Displaying a WRTKit notification .. 18

8.3 Using the prototype.js AJAX class .. 19

8.4 Parsing the OPML data ... 20

8.4.1 Understanding the OPML data structure .. 20

8.4.2 Traversing OPML ... 21

8.4.3 Reading category outline tags .. 21

8.4.4 Reading channel outline tags .. 22

8.5 Building the category menu .. 22

9 Displaying episodes .. 23

Nokia s60 WRT 1.0 Podcast Application 4

Forum.Nokia.com

9.1 Getting the RSS feed URL .. 24

9.2 Loading the RSS data ... 24

9.3 Parsing the RSS data .. 25

9.3.1 Understanding the RSS data structure .. 25

9.3.2 Traversing RSS .. 25

9.3.3 Parsing text nodes .. 26

9.3.4 Parsing tag attributes .. 26

9.3.5 Formatting data ... 27

9.4 Building the episodes menu ... 27

9.4.1 Reusing pre-existing controls ... 27

9.4.2 Removing extra controls ... 28

10 Initiating sound download ... 28

11 Using JSON to store favorite podcasts .. 29

11.1 Understanding JSON formatting ... 30

11.2 Saving favorite channels as a JSON formatted string .. 31

11.3 Converting the JSON formatted string to an object ... 32

12 Other features of the NPR podcast application .. 33

12.1 Removing favorites .. 33

12.2 Setting up modal help .. 34

12.3 Adjusting header line lengths for orientation .. 34

12.4 Setting up a modal options menu ... 34

13 Conclusion ... 34

About the author ... 35

Evaluate this resource .. 36

Nokia s60 WRT 1.0 Podcast Application 5

Forum.Nokia.com

Change history

Month day, year Version 1.0 Initial document release

Nokia s60 WRT 1.0 Podcast Application 6

Forum.Nokia.com

1 Introduction

The Nokia s60 Web Run Time (WRT) platform enables web developers to create standalone mobile applications for

Nokia s60 phones. Developers can leverage their existing knowledge of HTML, CSS and JavaScript to build

applications that launch from an icon in the Applications folder, run in full screen and integrate with the device through

proprietary JavaScript apis. Because of its web “centric” nature, WRT is an idiomatic platform for developing RSS

news readers, podcast players, mashups and other types of web applications.

In this article you will learn how to create a WRT 1.0 compatible podcast player application that loads publicly accessible

XML data and mobile friendly MP3 podcasts from the National Public Radio network (NPR). You will learn about using

Nokia’s WRTKit JavaScript framework to create WRT application interfaces, how to use prototype.js to

conveniently load XML and interact with JSON formatted data, and how to manage sound downloads in the WRT

environment.

1.1 Device Compatibility

Nokia s60 5th edition phones and greater, and Nokia s60 3rd edition fp2 devices with S60 Browser 7.1 support WRT
version 1.1. All Nokia s60 3rd edition fp2 phones and greater support WRT version 1.0. The following Nokia s60 3rd
edition fp1 phones also support WRT 1.0 with the most recent firmware upgrade: E51, E63, E66, E71, E90, N82, N95,
N95-3 NAM and N95 8GB. For a complete list of supporting phones visit the following URLs

http://www.s60.com/life/thisiss60/s60indetail/technologiesandfeatures/webruntime

http://www.forum.nokia.com/devices/matrix_webruntime_1.html

I successfully tested the example NPR podcast application on 5800 Xpress Music, N96, N95 8gb devices and the
emulators for the Nokia s60 3rd edition fp2 v1.1 SDK and the Nokia s60 5th edition v1.0 SDK.

1.2 Before you begin

You should have familiarity with JavaScript, HTML and CSS coding and a basic understanding of the Nokia WRT

platform.

Review the WRT documentation [http://www.forum.nokia.com/Technology_Topics/Web_Technologies/Web_Runtime/]

Review the WRTtKit framework documentation, available in the Aptana Studio documentation

Download the s60 3rd edition fp2 v1.1 SDK [http://www.forum.nokia.com/info/sw.nokia.com/id/ec866fab-4b76-49f6-b5a5-
af0631419e9c/S60_All_in_One_SDKs.html]

Download the s60 5th edition v1.0 SDK [http://www.forum.nokia.com/info/sw.nokia.com/id/ec866fab-4b76-49f6-b5a5-
af0631419e9c/S60_All_in_One_SDKs.html]

Download Aptana studio and Nokia WRT plug-in for testing and deployment
[http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/Runtimes/Web_Runtime/]

For the sake of brevity this article does not explain all aspects of the NPR podcast application and instead focuses on
core features of a basic podcast application including loading data, parsing data, building user interfaces and loading
sound. All assets for the application are located in the NPR Podcasts folder included with the download. You should
view certain code files such as the application.js and the manage_favorites.js files while reading through sections of the
article.

2 Developing a WRT application

Even though a WRT application is developed using familiar web technologies, the process of developing, testing and
deploying a WRT application is often different than building a conventional web site.

Nokia s60 WRT 1.0 Podcast Application 7

Forum.Nokia.com

A WRT application is a JavaScript application. It requires only one HTML file to initiate the application and serve

as a “canvas” for DOM scripting to dynamically build user interfaces.

Your application user interface should follow the conventions of a native s60 application consisting of a series of menu
screens that “drill down” to detailed information and using the left softkey options menu and the right softkey button to
navigate through application screens.

You must package and deploy WRT applications to the emulator or a device for testing. An application package consists

of a configuration file, HTML file, icon, JavaScript, CSS, images and media files contained in zip compressed

folder with the file extension renamed to .wgz.

You must run your WRT application either in the series 60 SDK emulator or on an actual device to test JavaScript

code using the proprietary apis like the widget object.

2.1 Using the Nokia SDK emulators

The Nokia SDK emulators enable you to test WRT applications in a desktop PC environment, which speed up the
development process because you do not have to first package and deploy the application to a device for testing.

2.1.1 Installing applications with the emulator

Launch the s60 v3 fp2 emulator or s60 v5 1.0 emulator

Use the open command from the file menu, browse to your .wgz file and select the file.

The emulator will install the application.

2.1.2 Testing applications with the emulator

Open the folder containing your working WRT project files

Open the folder in the emulator directory containing the previously installed WRT application.

C:\S60\devices\S60_3rd_FP2_SDK_v1.1\epoc32\winscw\c\private\10282822

C:\S60\devices\S60_5th_Edition_SDK_v1.0\epoc32\winscw\c\private\10282822

Note: The folder name of the application in the SDK directory has the same name as the Identifier value in the info.plist
configuration file for example com.aviarts.npr_podcast.

Copy files from your project folder into the WRT application emulator folder.

Restart the WRT application in the emulator to test changes.

Tip: Save the emulator folder as a windows favorite so you can easily access it later from the favorites menu available
from any folder window menu.

Tip: You can enable JavaScript debugging in the s60 5th edition SDK WRT environment by enabling

JavaScript debugging in the s60 browser. Start the browser, go to Options->Settings->General and set the

Java/ECMA script error item to “Show pop-up notes”.

Tip: It is a good idea to test your WRT application in multiple SDK emulators because of differences in the WebKit
browser capabilities and operating systems.

Nokia s60 WRT 1.0 Podcast Application 8

Forum.Nokia.com

2.2 Testing applications on a device

Once you have thoroughly tested the application in the SDK emulator you will need to test the application on the device
to ensure that the application works as you expect in the context of mobile device usage. You can transfer over
bluetooth, data cable or web browser download.

Tip: Enable JavaScript debugging in the device’s s60 5th edition web browser.

2.3 Using the Nokia WRT plug-in for Aptana Studio

Another option for testing and deploying WRT applications, is to use the Nokia WRT plug-in for Aptana Studio. Aptana

studio enables you to develop and manage your application in a feature rich IDE and debug JavaScript in a WRT

emulation like environment through the Firefox browser’s superior debugging tools. It also automates the process of
packaging your application into a .wgz file and can deploy your .wgz file directly to a phone over a bluetooth connection
or to the s60 emulator.

[http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/Runtimes/Web_Runtime/]

Note: You should also test your application in the SDK emulator and a device, because the Nokia WRT plug-in for
Aptana Studio uses Firefox web browser to run your application, which may interpret code differently than the WRT
environment, which is based upon the WebKit web browser.

2.4 Preparing an application icon

Like other s60 application platforms, a WRT application is accessible from an icon in the applications folder. An WRT
application icon should be 88 x 88 pixels and saved in png format. For best quality save as either 32 bit png from Adobe
Fireworks or 24 bit png from Adobe Photoshop. To see a newly updated icon in the application menu, you will first need
to remove any pre-existing install of your application, and then reinstall the application with the new version of the icon.
In some cases you may also need to restart the device after removing the old version of the application before install the
application with the new icon. If your icon does not alias well against the wallpaper of the phone, you may decide to use
a rounded rectangle for the background of the icon. This may improve the perceived quality of the icon because the
aliasing occurs at the edges of the rounded rectangle instead of around an irregularly shaped icon.

Figure 1 NPR podcast application icon

2.5 About the Nokia WRTKit framework

I used the Nokia WRTKit framework to build the user interface for the example NPR podcast application. WRTKit has a
set of classes for managing user interface issues such as interactive elements for selecting content, displaying content,
entering data etc. It also has classes for navigating between screens of information. Using a framework like WRTKit
saves time because you do not have to create your own user interface behaviors and can focus on developing an

application. WRTKit is an object-oriented framework consisting of Views, which are screens containing content, and

Controls which are the interactive elements that make up a View.

Review the WRTKit documentation which is available in the documentation for the Nokia plug-in for Aptana Studio.

2.6 Extending WRTKit

I extended the WRTKit framework to support features that either did not work as I needed or were not available. My
extension enables WRTKit to keep track of the selected control from a menu screen. When the user returns to a given

Nokia s60 WRT 1.0 Podcast Application 9

Forum.Nokia.com

screen, WRTKit can show the previously selected control and, if the selected control is not in the viewport, scroll down to

the control. It also stores each control from a view in an associative array that is indexed by the id attribute of the

control, so that it is easier to reference a control by its name.

Figure 2 Scroll down the Category screen menu and select the Technology option. Selecting the Technology category opens the
Technology channels screen.

Figure 3 From the Technology Channels screen, select the Categories right softkey to return to the Categories screen. Upon
returning to the Categories screen, the application automatically scrolls down to the Technology option and highlights it.

To support these features I extended the WRTKit addControl, insertControl and removeControl

methods by prototyping my own methods onto the ListView class. My extended methods do a few extra things

before passing arguments onto these core WRTKit methods. The addNewcontrol and insertNewControl

methods both add the control to the control_list associative array for the view, increment the array’s
size property and pass the control instance onto the corresponding core WRTKit method to be added to the view.

The removeExistingControl deletes the control instance from the control_list array, decrements

its size property and passes the control instance onto the removeControl method to be removed from the view.

To enable automatic scrolling, the scrollToSelectedControl method determines if the control is in the

viewport. If not, then it scrolls the screen to the selected control by setting calling

document.getElementById(id).scrollIntoView(true) so the browser “jumps” to the selected
control. This method also sets a style sheet class for the selected control that visually indicates the selected status of
the control.

Below is a brief explanation of the extended WRTKit methods that I used in the NPR podcast application code.

getSelectedControl – returns the instance of the currently selected control for the view.

Nokia s60 WRT 1.0 Podcast Application 10

Forum.Nokia.com

setSelectedControl – stores the id of the currently selected control for the view.

getControlList – returns an object acting as an associative array of controls for the view. The array is

indexed by the id attribute of each control. The object has a size property indicating the number of controls in

the array.

addNewControl – adds a new control to the view and adds the control to the control_list associative

array. This method has the same arguments as the addControl method.

insertNewControl – inserts a new control before the specified control in a View. This method has the same

arguments as the insertControl method.

removeExistingControl – Removes the specified control from the View. This method has the same

arguments as the removeControl method.

scrollToSelectedControl – Sets the class attribute of the selected control to

ControlAssemblyFocus (see WRTKit CSS in UI folder) and scrolls to the currently selected control if the

control is not in the WRT viewport. This method requires prototype.js functions to check the position of the control in
relation to the view port.

Review the code in the WRTKit_extended.js file found within the NPR Podcast folder for more specifics on how to
extend the WRTKit.

3 Planning the application

I selected the NPR network for the WRT podcast application example because it has publicly available XML news feeds

and mobile friendly podcasts. Many of the podcasts are 5mb or less which are reasonable downloads over WiFi and 3G
networks.

NPR organizes podcasts by categories, channels and episodes. Categories group channels together by topic. For
example, all technology related channels are grouped under the “Technology” category. A channel is analogous to a
radio program. Episodes are the shows available for a given radio program channel.

3.1 User interface

Because of the hierarchical organization of information, I developed the user interface for the application as a series of
menu screens that enable a user to navigate from the category list at the top of the hierarchy, through the selected
channel and its episode list down to the details of a selected episode. I also enabled the user to save a podcast channel
as a favorite, which are easily accessible from the home screen.

Figure 4 The categories screen lists all of the NPR podcast categories.

Nokia s60 WRT 1.0 Podcast Application 11

Forum.Nokia.com

Figure 5 The channels screen displays podcast channels for the selected category.

Figure 6 The episodes screen displays the available podcast episodes for the selected podcast channel.

Figure 7 The episode details screen displays information about a selected podcast episode and a button for downloading the MP3

podcast.

Nokia s60 WRT 1.0 Podcast Application 12

Forum.Nokia.com

4 Initiating the application

Typically you will code a WRT application to automatically start from a function called by the window.onload

event in the starting HTML file. It is a good idea to wait until the WRT environment loads all of the initially required

JavaScript, CSS and other files before starting the application itself. The example NPR podcast application starts

from a function named init, defined in application.js, which gets called from the window.onload event in the

body tag of the start.HTML document.

<body onload="init();">

At this point you should review the code for the init function located near the beginning of the application.js file.

The init function configures the WRT environment and sets instances for various WRTKit classes.

The block of code below configures the WRT widget and menu objects. It sets navigation to cursor style, displays

the softkey pane, specifies an event handler function for the menu.onShow event, and calls the

createOptionsMenu function to populate the items in the options menu.

if (window.widget) { // only for widget environment
 widget.setNavigationEnabled(true); // use cursor navigation
 menu.showSoftkeys(); // show the softkey pane
 // handler for dynamically displaying menu items depending upon view
 menu.onShow = menupaneOpen;
 createOptionsMenu(); // build the options menu
}

Tip: Using cursor based navigation, by setting setNavigationEnabled(true), ensures forward

compatibility with Nokia s60 5th edition touch screen devices.

Note that the widget object and the menu object apis are proprietary to the WRT environment and are not

recognized by desktop PC browsers. Code using these apis tested in a non WRT environment will create error

messages. It is a good idea to use if then statements to check that these objects exist to prevent errors in a

desktop PC browser testing environment.

The following lines of code define instances for the WRTKit framework.

// create UI manager
uiManager = new UIManager();

The line above defines an instance of the UIManager class. WRTKit uses the UIManager class to get and set

the current view and display status messages.

WRTKit views are screens that display information in the application. You will create a view for each screen in the

application. This following code block defines the ListView instances for the application and gives each

ListView a value for its id attribute and the view title, also called a caption.

// create views
// start up screen when no stored favorites
startupView = new ListView("startupView", NPR_LOGO + " Podcasts");
// podcast category view
categoryView = new ListView("categoryView ", NPR_LOGO + " Podcast
Categories");
// podcast channel view
channelView = new ListView("channelView", "Podcast Channels");
// podcast episode view
episodeView= new ListView("episodeView", "Episodes");

Nokia s60 WRT 1.0 Podcast Application 13

Forum.Nokia.com

// podcast episode view
episodeDetailView = new ListView("episodeDetailView", "Episode Detail");
// help view
helpView = new ListView("helpView", "Help");
// Manage Favorites view
manageFavoritesView = new ListView("manageFavoritesView", "Manage
Favorites");

Lastly, the init function calls the showStartupView function to display the home screen.

// show start up view
showStartupView();

5 Managing WRTKit controls

In some cases a WRT application using the WRTKit framework will need to dynamically change the controls in a view.

The showStartUpView function, which displays the home screen, is an example demonstrating how a WRT

application can dynamically build a user interface using WRTKit controls.

At this point you can review the group of functions that manage the home screen from the application.js file starting near
line 64.

5.1 Understanding controls on the home screen

The home screen is the first screen that the user sees when the application starts. It has two sets of controls; a menu
listing favorite podcasts, and buttons to view podcast categories and read help. The “View Podcast Categories” and
“Read Help” buttons are always part of the home screen, and only need to be created once. When the user first uses the
application there are no favorites, so the user will only see these two buttons. After the user saves favorite podcasts then
the favorite podcast listing will also appear on the home screen. However, the favorites list can change if the user adds
or removes a favorite podcast and the application must rebuild the menu, when the user revisits the home page, to show
the most recent version of the favorite podcast list.

Figure 8 Home screen displaying View Podcast Categories and Read Help buttons.

Nokia s60 WRT 1.0 Podcast Application 14

Forum.Nokia.com

Figure 9 Home screen displaying favorites menu in addition to buttons.

The showStartUpView function builds the home screen by dynamically adding controls to the startupView.

This function uses several local and global variables to manage adding controls to, or removing controls from the

startupView. These variables help determine whether it is the first visit to the home screen, or if the user has

changed the favorite podcast list, requiring the application to rebuild the favorite podcast menu.

5.2 Checking for first visit to the home screen

The first line of code in the showStartUpView function retrieves all of the controls for the view using the WRTKit

extended method getControlList and stores these in a variable named controls.

var controls = startupView.getControlList();

The variable controls is an object referencing each control as an associative array indexed by the control

id attribute.

The variable first_display represents whether or not this is the first time the application has displayed the home

view. The boolean value of first_display is true if the global variable HOME_SCREEN_LAST_VISIT is

0 and false if other than 0.

// true or false for first visit to this view
var first_display = (HOME_SCREEN_LAST_VISIT == 0);

The variable HOME_SCREEN_LAST_VISIT is set to 0 at the start of the application. The showStartUpView

function updates the value of HOME_SCREEN_LAST_VISIT with a millisecond timestamp at the end of the

function code, so it is always greater than 0 after the application first displays the home screen. Therefore,

first_display should only have a value of true the first time the home screen displays and will be false for

subsequent displays.

5.3 Checking for changes to the favorite podcast list

The next line of code in the showStartUpView function sets a boolean value for the local variable

hasFavoritesListChanged.

// favorites changed since last visit
var hasFavoritesListChanged = (FAVORITES_LAST_UPDATE >
HOME_SCREEN_LAST_VISIT);

The conditional statement compares the millisecond values of the global variables FAVORITES_LAST_UPDATE

and HOME_SCREEN_LAST_VISIT. The application updates FAVORITES_LAST_UPDATE with a millisecond

timestamp anytime the user adds or removes a podcast from the favorites list. If the timestamp of

Nokia s60 WRT 1.0 Podcast Application 15

Forum.Nokia.com

FAVORITES_LAST_UPDATE is greater than the last visit to the home screen then the user has changed the

favorites list since the last visit to the home screen. The showStartUpView function will use the

hasFavoritesListChanged variable to determine whether or not to rebuild the favorite podcast menu.

5.4 Creating the “view categories” and “read help” button

The following block of code from the showStartUpView function creates the “View categories” and “Read Help”
buttons, only when the application first displays the home screen. Otherwise, these buttons already exist and there is no
need to re-execute the code. Note that re-executing this code would unnecessarily duplicate these two buttons.

// create buttons for view podcast categories and read help
// only done once, on first display of the view
if (first_display == true) { // no controls yet added to the view
 // create view podcast categories
 var catbtn = new FormButton("viewcategories", "View Podcast
Categories");
 catbtn.addEventListener("ActionPerformed", showOrLoadCategories);
 startupView.addNewControl(catbtn);

WRTKit FormButton controls have an HTML id attribute, a caption, which is the label for the button and an

event handler function. Generally, you will use FormButton controls for executing specific actions in a WRT

application.

To create the control, the showStartUpView function first creates a new instance of the FormButton Class,

give it the id “viewcategories”, and the caption “View Podcast Categories’. The showStartUpView function

defines the event handling function using the addEventListener method. When the user selects the “view
podcast categories” button, JavaScript will execute the function showOrLoadCategories to display the

category list in a new screen. Lastly, showStartUpView function adds the control to the startupView with

the WRTKit extended addNewControl method. Note, that there is similar code for creating the “Read help” button.

5.5 Removing the previous favorites menu

Next, the showStartUpView function checks if the favorite podcasts list has changed and if so, removes any pre-

existing favorite podcast buttons to prevent duplication of controls when rebuilding the menu.

// remove pre-existing favorites buttons if favorites list changed
if (hasFavoritesListChanged == true) {
 // some favorites buttons already exist
 for (id in controls) {
 // skip these buttons
 if (id != "viewcategories" && id != "viewhelp") {
 // remove control
 startupView.removeExistingControl(controls[id]);
 }
 }
}

The code checks that hasFavoritesListChanged is true, meaning that the favorite podcasts list has

changed since the last visit to the home screen. If the user has changed the list, the code loops through each control

and removes all controls from startupView except the view categories and read help buttons.

5.6 Building a new favorites menu

The showStartUpView function is now ready to create the favorite podcast list menu. For efficiency, the function

should only build the menu on the first display of the home screen, or if the user has changed the favorite podcast list.

// only build menu for first display of home screen

Nokia s60 WRT 1.0 Podcast Application 16

Forum.Nokia.com

// or if favorites list has changed
if(first_display == true || hasFavoritesListChanged == true){

The code then checks if there are any favorites using the getFavoritesPref function which returns null if

there are no stored podcasts or a JSON formatted string representing the stored favorite podcasts. You will learn

more about the process of saving favorite podcasts in section 11.

 // if there are favorites then build menu
 // attempt to get list of favorites
 var favorites_json = getFavoritesPref();
 if (favorites_json != null) { // pref contains saved favorites

The getFavoritesAsObject function converts the JSON string into an array of JavaScript

objects. The showStartUpView function then builds the menu with the most recently added favorite podcast at

the top of the menu. Each option in the menu is a NavigationButton type of control.

 // get favorites as a JavaScript object
 var podcast_favorites = getFavoritesAsObject();
 // build menu listing favorites, display favorites so that most
recent are first
 var index_start = podcast_favorites.length - 1;
 for (var i = index_start; i >= 0; i--) {
 // get the channel title
 var btn_caption = podcast_favorites[i].title;
 // create the control
 var favorite_btn = new NavigationButton(i, RSS_ICON,
btn_caption);
 // add an event
 favorite_btn.addEventListener("ActionPerformed",
channelSelected);
 // insert the control
 startupView.insertNewControl(favorite_btn,
controls['viewcategories']);
 }

Each NavigationButton control has a numeric value for its id attribute, an RSS icon graphic and a

caption as taken from the title of the corresponding favorite podcast. The global variable RSS_ICON contains the

path to the RSS feed icon graphic stored inside the .wgz archive.

The showStartUpView function also assigns the channelSelected function as the event function handler

for each favorite podcast button. When the user selects a favorite podcast from the menu, the application will execute

the channelSelected function to display the current episodes for the podcast. The code uses

insertNewControl to add the control before the view categories button. This builds the favorite podcast menu

above the view categories and read help buttons so the menu is easily accessible at the top of the home screen.

6 Navigating through menu screens

Before delving into other aspects of the application, it is helpful to understand how the application manages navigation
through the various menu screens. To access podcasts, a user browses from the categories screen down to the episode
details screen. Each screen has a menu enabling the user to “drill down” to more specific information. When the user
selects an option in the menu, JavaScript dynamically builds the assets for the next screen so the user can access

the next level of information. To do this, the application needs to know which control the user selected and how to
process the selection event.

6.1 Understanding the Listener model

An application using the WRTKit framework is based upon an event listener model. When a user selects a control,

JavaScript executes the event handler function assigned to the control’s event listener callback method. The

Nokia s60 WRT 1.0 Podcast Application 17

Forum.Nokia.com

controls for the categoryView, channelView and episodeView screens all have specific event handler

functions for processing events from a menu selection.

For example, each NavigationButton control in the category menu on the categoryView screen has the

categorySelected function as the event handler function assigned to its event listener.

categorybtn.addEventListener("ActionPerformed", categorySelected);

When the user selects a category from the menu, JavaScript executes the categorySelected function.

6.2 Processing the menu selection

The categorySelected function receives an event object from a button’s event listener callback function. The
event.source object represents the menu option control that the user selected.

// button event handler
function categorySelected(event){
 categoryView.setSelectedControl(event.source.id);
 showChannelView();
}

Each NavigationButton control has a unique numeric value for its id attribute. The categorySelected

function gets the id of the selected control from the event.sourc.id property and stores the value of the id

attribute using the WRTKit extended setSelectedControl method. The application will retrieve this numeric id

later to access the channels for the selected category from the global PODCAST_CATEGORIES object, and

also display the selected menu item when the user returns to the categoryView screen. The function then calls

the showChannelView function which builds the menu for the channelView screen.

7 Accessing data and sound

NPR provides a publicly available OPML formatted category list that includes all of the channels grouped by category.

OPML is a XML markup intended for outlining topics and sub topics and is a common format for creating podcast

category listings.

Each channel has a URL to its corresponding RSS feed that lists current episodes. RSS is a standard XML markup for

listing posts to a blog or podcast. Each item in the RSS feed includes information about the episode and a URL to

download the MP3 sound file for the episode.

8 Displaying podcast categories

To display podcast categories, the application must download the OPML data and dynamically build the category menu

on the categories screen from the data. Since the category list does not change very often, it is only necessary to

download the OPML data and create the category menu once during the application session. All subsequent visits to

the categoryView screen will not require reloading the OPML data and rebuilding the menu.

At this point you can review the group of functions that manage the categoryView screen from the application.js

file starting near line 134.

The showOrLoadCategories function determines whether to load the OPML data and build the category menu,

or just show the already existing category menu.

// check to see if the categoryView has any content
function showOrLoadCategories(){
 var controls = categoryView .getControlList();
 if(controls.size > 0){
 showCategoryView(); // has existing content, show category view

Nokia s60 WRT 1.0 Podcast Application 18

Forum.Nokia.com

 } else {
 loadPodCastCategories(); // no content yet, load categories
 }
}

In the first line of code, the function gets the list of controls for the categoryView. If the size property is greater

than 0 then the category menu already exists because the view already has controls assigned to it. In this case the

function calls the showCategoryView function to display the view without reloading the OPML data and rebuilding

the menu.

If the size property equals 0 then there are no controls and no category menu. The function calls the

loadPodCastCategories function to start the process of loading the OPML data, parsing the data into a

JavaScript object and building the category menu user interface.

8.1 Loading OPML data

The loadPodCastCategories handles loading the OPML data. The function first determines the URL of the

OPML file based upon whether the application is configured to load the online file or the local file. The URLs to these

two files are defined in the global variables section at the beginning of the application.js file.

if(TEST_OFFLINE == true){
 var opmlurl = OPML_LOCAL; // load local copy
} else {
 // always load a new copy of online opml
 var opmlurl = addNoCacheStr(OPML_ONLINE);
}

When loading the online OPML file, the application calls the addNoCacheStr function to append a timestamp as a

name value pair at the end of the URL. Below is an example of how the addNoCacheStr function modifies the

URL to the OPML file.

http://www.npr.org/podcasts.opml?nocache=1234567

The millisecond timestamp ensures that the URL is always unique requiring the WRT environment to load the most

recent online version of the file instead of a previously cached version of the OPML file.

8.2 Displaying a WRTKit notification

The loadPodCastCategories function then displays a notification, using the WRTKit

uiManager.showNotification method to alert the user that the application is attempting to load the

category list over the Internet.

Nokia s60 WRT 1.0 Podcast Application 19

Forum.Nokia.com

Figure 10 Show a notification while the categories OPML file downloads.

uiManager.showNotification(-1,"wait","loading categories",-1); // show
notification

Typically you will use the “wait” type of WRTKit notification for alerts that last for an undetermined length of time. This
line of code configures an alert with the message “loading categories” that will remain visible for an indefinite period of
time. The application will hide the alert after the OPML file finishes loading or if there is a failure to load the OPML file.

Note: Review the WRTKit documentation in the Aptana Studio help files for more information on using WRTKit
notification messages.

8.3 Using the prototype.js AJAX class

Next, the loadPodCastCategories function makes an AJAX call to load the OPML data from the NPR web

site using the prototype.js Ajax class. The prototype.js Ajax.Request method requires a URL to the OPML

document, and an object that sets the HTTP method of the request to “get”, and assigns function literals to the
onSuccess and onFailure callback functions.

new Ajax.Request(opmlurl,
{
method:'get',
 onSuccess: function(transport){
 var xmlDoc = transport.responseXML;
 uiManager.hideNotification();
 populateCategoryView(xmlDoc);
 },

 onFailure: function(){
 uiManager.showNotification(3000,"warning","Unable to load
categories.",0);
 }
 }
);

After the file loads, the prototype.js Ajax.Request class calls the function assigned to the onSuccess call back.

onSuccess: function(transport){
 var xmlDoc = transport.responseXML;
 uiManager.hideNotification();
 populateCategoryView(xmlDoc);

Nokia s60 WRT 1.0 Podcast Application 20

Forum.Nokia.com

}

This code passes the XML object representation of the OPML document to the populateCategoryView

function to parse the document and build the category menu. At this point the application exits the

loadPodCastCategories function and executes the populateCategoryView function.

If the OPML fails to load, then the Ajax.Request class calls the onFailure call back function which uses the

WRTKit uiManager.showNotification method to display a message “Unable to load categories”, alerting
the user to the problem. In this case the application will not proceed to the populateCategoryView function.

onFailure: function(){
 uiManager.showNotification(3000,"warning","Unable to load
categories.",0);
}

You can use the “warning” type of WRTKit notification to alert users to errors in your application. The value of 3000

milliseconds sets the duration of the notification to 3 seconds.

For each call to the showNotification method, the WRTKit uiManager will replace any previously displayed

notification with the new one, so there is no need to explicitly hide the “loading categories” message before showing the
“unable to load categories” message.

Note: Review the online prototypejs documentation for more information on the Ajax class

http://prototypejs.org/api/ajax/request

8.4 Parsing the OPML data

After loading the data, the application must now parse the data into a form that is usable for JavaScript. The

populateCategoryView passes the XML object to the getPodCastCategories function which

handles parsing of the OPML data.

8.4.1 Understanding the OPML data structure

NPR organizes podcast channels within its OPML file both by radio station and by topic. To simplify the application user

interface I decided to limit the menu system to browsing by topic only. Consequently, the parser code will need to skip

all of the radio station outline tags and only display the data from category outline tags. The parser also needs

to get information for the channel outline tags nested within each category outline tag.

Below is an excerpt of the OPML showing first the outline tag “BySource” which lists podcasts by radio station,

followed by individual outline tags for each topic category.

<body>
<outline text="BySource">
<outline text="Colorado Public Radio">
<outline text="CPR: Colorado Matters" title="CPR: Colorado Matters"
type="rss" version="RSS" xmlUrl="http://www.npr.org/rss/podcast.php?id
=510072" htmlUrl="http://cpr.org/co_matters/"/>
 </outline>
 …
 (more outline tags for each local NPR station or network)

 (the following outline tags group podcast channels by category)
<outline text="Arts & Entertainment">
<outline text="NPR: In Character" title="NPR: In Character" type="rss"
version="RSS" xmlUrl="http://www.npr.org/rss/podcast.php?id =17914370"
htmlUrl="http://www.npr.org/blogs/incharacter/"/>
… (more channels for the Arts and Entertainment category)

http://prototypejs.org/api/ajax/request

Nokia s60 WRT 1.0 Podcast Application 21

Forum.Nokia.com

 </outline>
 … (more categories)
</body>

Each category outline tag has a text attribute representing the name of the category such as “Arts &
Entertainment” and nested channel outline tags containing information about the radio show channel for a category.

<outline text="Arts & Entertainment">

Each channel outline tag has a number of attributes including the title of the radio show and the URL to the

RSS feed for the show.

<outline text="NPR: In Character" title="NPR: In Character"
type="rss" version="RSS"
xmlUrl="http://www.npr.org/rss/podcast.php?id =17914370"

htmlUrl="http://www.npr.org/blogs/incharacter/"/>

8.4.2 Traversing OPML

The getPodCastCategories function traverses the outline tags of the OPML document, gets the required

attribute values of each tag and returns a two-dimensional array of objects representing categories and their

respective channels. Each category object has a text property for the name of the category and a channels

array which is collection of objects represented the channels for a given category. Each channel object has a

title property for the name of the radio show and an xmlurl property for the URL to the radio show RSS feed.

The first few lines of code in the getPodCastCategories function define variables.

var categories = new Array();
var root = xmlobj.getElementsByTagName('body')[0];
var outlines = root.getElementsByTagName('outline');

The categories array will contain an object for each category. The variable root represents the body

tag, which is the node were the function begins traversing the DOM of the OPML document. The variable

outlines is an array representing all outline tags in the OPML document.

var num_outlines = outlines.length;
var cat_count = 0;

The variable num_outlines stores the number of outlines and the variable cat_count represents the number

of categories that have been parsed, starting at 0.

The getPodCastCategories function then uses a nested loop structure to iterate through all of the category

outline tags and nested channel outline tags. The outer loop traverses the category outline tags and the

inner loop traverses the channel outline tags nested inside of each category outline tag. Note that the

application must skip all of the outline tags for radio stations and only parse the category outline tags and

corresponding channel outline tags.

8.4.3 Reading category outline tags

The outer loop of the getPodCastCategories function handles parsing of the category outline tags.

for(var i=0; i<num_outlines; i++){
 if(outlines[i].parentNode.tagName == "body" && i>0){

All of the category outline tags have the body tag as their parentNode. The radio station outline tags have

the “BySource” tag as their parentNode. The if then condition in the loop limits parsing to only the

category outline tags by only allowing outline tags which have the body tag as the parentNode. This

Nokia s60 WRT 1.0 Podcast Application 22

Forum.Nokia.com

eliminates the radio station outline tags because these tags have the “BySource” outline tag as their

parentNode. Checking that i>0 skips the ”BySource” tag itself, which is the first outline tag in the

document.

Next, the getPodCastCategories function begins to build the two dimensional array representing the

hierarchical relationship of categories and their channels.

var outline_text = outlines[i].getAttribute("text");
categories[cat_count] = new Object;
categories[cat_count].text = outline_text;

The variable outline_text contains the name of the current category. The DOM getAttribute method

returns the value of the text attribute of the current outline tag. The getPodCastCategories function

then creates a new object in the category array using cat_count as the index of the array. Each

category object has its text property set to the name of the category. The function increments the value of

cat_count after each iteration of the outer loop.

Since each category has channels associated with it, the getPodCastCategories function creates a second

dimension array named channels to act as a collection of objects representing each channel in a given category.

categories[cat_count].channels = new Array();
var podcast_channels = outlines[i].getElementsByTagName('outline');
var num_channels = podcast_channels.length; // store array

The variable podcast_channels is an array representing all channel outline tags nested within the

current category outline tag. The variable num_channels stores the number of channels for the current

category.

8.4.4 Reading channel outline tags

The inner loop of the getPodCastCategories function handles parsing of data for the channel outline tags.

for(var j=0; j<num_channels; j++){
 categories[cat_count].channels[j] = new Object;
 categories[cat_count].channels[j].title =
podcast_channels[j].getAttribute("title");
 categories[cat_count].channels[j].xmlurl =
podcast_channels[j].getAttribute("xmlUrl")
}

The code creates a new Object for each channel in the category and assigns the title and xmlUrl attributes

from the current channel outline tag to the title and xmlurl properties of the channel object for the

current channel.

Lastly, the getPodCastCategories returns the two-dimensional array to the

populateCategoryView function.

8.5 Building the category menu

The populateCategoryView function builds the menu for the categoryView. First the function assigns

the two-dimensional array returned from the getPodCastCategories function to the global variable

PODCAST_CATEGORIES. Note that since the PODCAST_CATEGORIES also contains the channel listings and

the application will use this same object to create the menu for the channelView.

// object listing categories and channels for each category
PODCAST_CATEGORIES = getPodCastCategories(xmlobject);

Nokia s60 WRT 1.0 Podcast Application 23

Forum.Nokia.com

Next the function loops through the object, gets the title of each category and builds NavigationButtons for

each category.

for(var i=0; i<PODCAST_CATEGORIES .length; i++){
 var text = PODCAST_CATEGORIES [i].text;
 var categorybtn = new NavigationButton(i,CATEGORY_ICON,text);
 categoryView .addNewControl(categorybtn);
 categorybtn.addEventListener("ActionPerformed", categorySelected);
}

When the user selects a category, the application will call the categorySelected function which starts the

process of building the channels menu for the channels screen. You can review the functions for building the

channelsView screen in the application.js file starting near line 260.

Note that the NavigationButtons on the category screen have the icon graphic defined in the

CATEGORY_ICON global variable. I used different icons for the NavigationButtons on the category,

channel and episodes menu screens so that the end user can visually understand their location in the hierarchy of
application interface based upon the icon type that appears on screen.

Figure 11 Icons for categories, channels and podcasts

9 Displaying episodes

To review, the NPR podcast user interface is a series of menu based screens enabling a user to navigate through the
hierarchy from categories to channels to episodes to the details of a selected episode. When the user selects a radio

show channel on the channelView screen, the application takes the user to the episodeView screen to see

the available episodes for that channel.

The episodeView consists of a menu listing the current episodes for the channel and a header with the name of

the selected radio show channel.

Figure 12 This episode screen lists all available episodes for the NPR: Technology podcast.

Nokia s60 WRT 1.0 Podcast Application 24

Forum.Nokia.com

9.1 Getting the RSS feed URL

When a user selects a channel on the channelView screen, JavaScript executes the

channelSelected function. The primary purpose of the channelSelected function is to retrieve the RSS

feed for the selected channel and pass it to the loadEpisodes function which starts the process of building the

episode menu for the episodeView.

It is important to note that the controls for the favorite podcast channels menu on the home screen also call the

channelSelected function. So the channelSelected function needs to determine if the user is

navigating from the home screen or the categoryView screen, so it can use the appropriate object to get the

RSS feed for the channel.

If the user selects a channel from the favorite podcast menu on the home screen then the channelSelected

function needs to use the information stored in the WRT preference. Otherwise the function uses the

PODCAST_CATEGORIES object to retrieve the RSS URL.

// coming from startupView favorites btn
if(uiManager.getView() == startupView){
…
 var selectedFavorite = startupView.getSelectedControl().id ;
 var podcast_favorites = getFavoritesAsObject();
 var episodeUrl = podcast_favorites[selectedFavorite].xmlUrl;

The if then statement uses the uiManager.getView method to determine the current view. If the current

view is the startUpView then the user is navigating from the home screen to the channelView screen, and the

channelSelected function must get the RSS feed from the WRT preference.

The channelSelected function uses the id of the selected control as the index for the

podcast_favorites array. The podcast_favorites is an array of objects representing the

channels stored in the WRT preference. The structure of this object is the same as the channels object.

The function stores the RSS feed URL for this channel in the episodeUrl variable and passes this value to the

loadEpisodesfunction.

If the user navigates from the categoryView screen to the channelView screen then the function uses the

PODCAST_CATEGORIES object to retrieve the RSS feed.

} else { // coming from some other view, not using favorites
 var selectedCategory = categoryView .getSelectedControl().id ;
 var selectedChannel = channelView.getSelectedControl().id ;
 var episodeUrl = PODCAST_CATEGORIES
[selectedCategory].channels[selectedChannel].xmlurl;
}

Using a similar process, the channelSelected function uses the id of the selected control as the numeric index

to look up the channel object in the array. It then stores the value of xmlurl property containing the RSS feed

URL in the episodeUrl and passes this to the loadEpisodesfunction.

9.2 Loading the RSS data

At this point you can review the group of functions that manage the episodelView screen from the application.js file
starting near line 325.

Like the loadPodCastCategories function in section 8.3, the loadEpisodes function makes an AJAX

call using the prototype.js Ajax class to load the RSS feed XML file for the selected channel. The loadEpisodes

function displays a notification that the RSS feed is loading, and the onSuccess callback function passes the XML

object representation of the RSS feed to the showEpisodeView function.

Nokia s60 WRT 1.0 Podcast Application 25

Forum.Nokia.com

9.3 Parsing the RSS data

After loading the data, the application must now parse the data into a form that is usable for JavaScript. The

showEpisodeView function passes the XML object representing the RSS feed to the

getPodCastEpisodes function to handle parsing of the RSS data. After the getPodCastEpisodes

function parses the data it returns an array representing the episodes for the selected channel to the

showEpisodeView function which builds the episodes menu.

9.3.1 Understanding the RSS data structure

A RSS feed XML file consists of item tags that contain information about each episode for the radio show. Each

item tag has child tags for specific information about the show such as the title, description, publication date and the

URL to the MP3 sound file of the podcast. Below is an example item tag from RSS feed for the NPR: In Character

Podcast radio show for the episode “Robert Jordan, Hemingway's Bipartisan Hero”.

<item>
 <title>Robert Jordan, Hemingway's Bipartisan Hero</title>
 <description><![CDATA[Though fierce political opponents, John
McCain and Barack Obama agree on a literary matter: Each picks Ernest
Hemingway's 1940 novel For Whom the Bell Tolls, featuring the
stoic freedom-fighter Robert Jordan, as a favorite.]]></description>
 <pubDate>Tue, 14 Oct 2008 08:03:12 -0400</pubDate>

<link>http://www.npr.org/templates/story/story.php?storyId=95604448&
ft=2&f=17914370</link>
 <guid>http://podcastdownload.npr.org/anon.npr-
podcasts/podcast/17914370/95686256/npr_95686256.MP3</guid>
 <itunes:summary><![CDATA[Though fierce political opponents, John
McCain and Barack Obama agree on a literary matter: Each picks Ernest
Hemingway's 1940 novel For Whom the Bell Tolls, featuring the stoic
freedom-fighter Robert Jordan, as a favorite.]]></itunes:summary>
 <itunes:keywords>NPR,National Public Radio,In Character,Morning
Edition,All Things Considered,Fresh Air</itunes:keywords>
 <itunes:duration>7:19</itunes:duration>
 <itunes:explicit>no</itunes:explicit>
 <enclosure URL="http://podcastdownload.npr.org/anon.npr-
podcasts/podcast/17914370/95686256/npr_95686256.MP3" length="3547932"
type="audio/mpeg"/>
 </item>

9.3.2 Traversing RSS

The NPR podcast application, displays information from the title, description, pubdate and enclosure

tags. The getPodCastEpisodes function traverses the item tags of the RSS XML document, gets the values

of these tags, stores these values in an array of objects and returns the array. Each object in the array has

corresponding properties for the title, description, published date, MP3 URL and sound file size of a podcast episode.

The first few lines of code in the getPodCastCategories function define variables for positioning the parser in

the XML document.

// get a reference to the root-element "rss"
var root = rssfeed.getElementsByTagName('rss')[0];
// get reference to "channel" element
var channels = root.getElementsByTagName("channel");
// get all "item" tags in the channel
var items = channels[0].getElementsByTagName("item");

Nokia s60 WRT 1.0 Podcast Application 26

Forum.Nokia.com

The variable root represents the rss tag, which is the root node of the DOM. The variable channels

represents the node of the channels tag and items is an array representing each item tag within the

channels tag. These three lines of code position the parser to return the item tags for the first channel tag

within the first rss tag. Note that usually there is only one channel in a RSS news feed for a podcast, so the array

only has one channel tag.

var news_items = new Array(); // array of objects

The array news_items will contain an object for each episode.

Next the getPodCastEpisodes function loops through each item in the RSS XML document and creates an

object for each item tag to be stored in the news_items array.

// set number of items to display
num_news_items = items.length;
for(var i=0; i<num_news_items; i++){
 news_items[i] = new Object;

9.3.3 Parsing text nodes

Some of the information for the episode is stored as the text node of a tag, such as the title tag. The text

node is the information within the start and end tags. For example in the title tag below the value of the text

node is “Robert Jordan, Hemingway's Bipartisan Hero”.

<title>Robert Jordan, Hemingway's Bipartisan Hero</title>

Generally, when parsing a RSS feed you use the statement getElementsByTagName("title")[0] to get

the node of the title tag for a given item. More specifically, to retrieve the title of an episode, the

getPodCastEpisodes function finds the tags named “title” for the current item using the DOM method

getElementsByTagName("title")which returns an array of all of the title tags for this item. To access

the first, and only title tag in this item, you reference the array index 0. Typically there is only one title tag for each

item in a RSS feed, so the array only has one title.

// extract information from rss feed store in array
// as properties of array
news_items[i].title =
items[i].getElementsByTagName("title")[0].firstChild.nodeValue;

To read the text node of the title tag, the function accesses the firstChild of the title tag, which is

the first item contained within the tag. In this case the firstChild is the text node itself. The

getPodCastEpisodes function reads the actual value of the text node from the DOM nodeValue

property.

9.3.4 Parsing tag attributes

The MP3 URL and file size are stored in the url and length attributes of the enclosure tag which requires a

different syntax to parse.

// get url of the sound
news_items[i].soundurl =
items[i].getElementsByTagName("enclosure")[0].getAttribute("url");
}

To read the value of an attribute, the getPodCastEpisodes function accesses the enclosure tag using the

previously described syntax and retrieves the value of the specified attribute with the DOM

getAttribute(“url”) syntax.

Nokia s60 WRT 1.0 Podcast Application 27

Forum.Nokia.com

9.3.5 Formatting data

Because the values for the publish date and the file size are not in a simple format, the getPodCastEpisodes

function passes these two values to other functions to change the information into a more familiar reformat. The

formatDate function takes the value from the pubdate tag and formats it into yyyy/mm/dd format.

The file size of the MP3 is stored as a value in bytes in the length property of the enclosure tag. The

getPodCastEpisodes function passes this value to the getReadableFileSize function to convert the

byte value to kb, mb or gb values which are more meaningful to end users.

9.4 Building the episodes menu

The last step is for the getPodCastEpisodes function to call the showEpisodeView function to build the

episodes menu for the episodesView screen. The application should always build a new menu when the user

navigates from the channelView or a favorite podcast selection on the startupView, because a new channel

selection requires a new episode menu. However, the application does not need to rebuild the menu if the user returns

to the episodeView after viewing the details on for an episode because the user may want to view a different

episode for the current channel. In this case the showEpisodeView function only shows the episodeViewby

calling the uiManager.setView method.

The showEpisodeView function will proceed to build the menu only if the current view is either the

channelView or the startupView. The following if then condition manages this comparison.

var current_view = uiManager.getView();
if(current_view == channelView || current_view == startupView){

If the user is navigating from one of these two views then the function begins the process of building the menu. The
function sets control variables for the loop that builds the menu.

PODCAST_EPISODES = getPodCastEpisodes(xmlobject);
 var num_episodes = PODCAST_EPISODES.length;
 var controls = episodeView.getControlList();

The global variable PODCAST_EPISODES contains the array of item objects returned from the

getPodCastEpisodes function. The application uses a global variable to store this information because it will

use the data in this object again to build the episodedetailView screen. The num_episodes variable

contains the number of episodes to control the number of times to iterate through the loop and the controls variable

contains a list of all the controls for the episodeView.

9.4.1 Reusing pre-existing controls

Next the showEpisodeView function starts building the episodes menu. This loop proceeds through each episode

in the PODCAST_EPISODES object. For efficiency, the function will reuse existing controls by renaming the

caption of the control, add any new controls if needed and lastly remove any extra un-needed controls.

for(var i=0; i<num_episodes; i++){
 var btn_text = PODCAST_EPISODES[i].title;

 // check to see if button created
 if(controls[i] != null){ // button object exists
 controls[i].setText(btn_text); // change text

The function checks if there is a control for a given index in the controls list and if a control already exists, then simply re-

label the control using the WRTKit setText method to assign the episode to the caption of the button.

 } else { // cteate button object

Nokia s60 WRT 1.0 Podcast Application 28

Forum.Nokia.com

 var episodebtn = new
NavigationButton(i,PODCAST_ICON,btn_text);
 episodeView.addNewControl(episodebtn);
 episodebtn.addEventListener("ActionPerformed",
episodeSelected);
 }
}

If there is no pre-existing control at a given index, then the function creates a new button. Each control in the episode
menu has a podcasting icon graphic to help the user visually discern that this content pertains to podcast sound files.

9.4.2 Removing extra controls

In some cases there may be more controls than needed for the current menu. For example, a user may have previously

browsed to a channel with ten episodes then selected a new channel with only five episodes. In this case the for

loop described in section 9.4.1 will reuse and re-label the first five controls. However, there are still five controls left

over from the previously built menu. Consequently the showEpisodeView function will need to remove these extra

un-needed controls. The following block of code manages this task.

/* check if there are more buttons than needed to display episodes for
this channel */
if(controls.size > num_episodes){
 // store before loop, controls.size decrements
 // with each removeExistingControl call
 var controls_to_remove = controls.size;
 for(var i=i; i<controls_to_remove; i++){
 // remove extra buttons from previous category
 episodeView.removeExistingControl(controls[i]);
 }
}

The if then statement checks for extra controls by determining if there are more controls in the view than there are

episodes to display. Next the function stores the number of controls for the channelView in a separate variable

controls_to_remove, because as it removes controls the control.size property decreases and would

adversely affect the logic of the loop control. The for loop in this code block starts counting where the last for

loop finished, which is be the numeric id of the last needed control. The showEpisodeView function calls the

WRTKit extended removeExistingControl method to remove the control from the menu.

10 Initiating sound download

Current versions of the WRT environment do not support a sophisticated user interface for controlling sound embedded
in a WRT application screen. So instead of embedding sound, you will offer a better end user experience by

downloading the sound with the widget.openURL method and allowing phone music player to launch to play the

sound.

The music player enables the user to monitor the progress of the file download, control sound playback and save the
podcast to the podcast folder in the gallery. Furthermore, the music player for the Series 60 5th edition devices will
progressively load the sound, playing the sound as it downloads for a quicker listening experience.

The NPR podcast application launches the music player when the user selects the “Download Podcast” button on the
episodeDetailView screen. The event listener for this button calls the downloadPodcast function to

handle the download. At this point you should review the code for the downloadPodcast function near line 499 in

the application.js file.

function downloadPodcast(){
 // show loading message
 var selectedEpisode = episodeView.getSelectedControl().id ;

Nokia s60 WRT 1.0 Podcast Application 29

Forum.Nokia.com

 var soundfileurl = PODCAST_EPISODES[selectedEpisode].soundurl;
 widget.openURL(soundfileurl);
}

To determine the URL of the podcast, the downloadPodcast function first gets the id property of the control

that the user selected from the episodeView. Next the function references the corresponding episode from the

PODCAST_EPISODES array using the id as the index, and storing the soundurl property of this episode in

the soundfileurl variable. Lastly, the function passes the value soundfileurl to the

widget.openURL method which causes the phone to launch the music player and start the podcast download.

11 Using JSON to store favorite podcasts

Users have the ability to save the current channel as a favorite podcast by selecting the “Save as Favorite” option from
left softkey options menu from the episodesView and the episodeDetailView screens. The NPR podcast

application displays the saved favorite podcasts in the favorites list on the home screen. This is a convenient feature
that enables users to quickly access the podcasts that they listen to frequently.

Figure 13 Save a favorite podcast channel from the left softkey options menu.

Figure 14 View the list of favorite podcast channels from the home screen.

Nokia s60 WRT 1.0 Podcast Application 30

Forum.Nokia.com

The WRT environment saves persistent data in a WRT preference variable, which is a useful way to store user

generated data, such as the podcast favorites list, in between sessions of the application. However, current versions of

the WRT environment only support storing string data types, not structured native JavaScript data types like

objects and arrays.

The favorite podcasts is a list of channels each with a title and a RSS feed URL. This structured data is most efficiently

represented as an array of JavaScript objects each with a corresponding title and xmlUrl property. To

preserve this structure while saving in a WRT preference, the NPR podcast application stores the favorites list as

a JSON formatted string, and uses the included JSON functions of prototype.js to conveniently convert the data

between JSON and a JavaScript array.

11.1 Understanding JSON formatting

JSON (JavaScript Object Notation) is a representation of a JavaScript object such as an array or an

object type in Object notation format as a string. Most often we see JavaScript objects represented with

dot syntax.

Objectname.propertyname = “value”;

However JavaScript also supports object notation to represent an object.

{“propertyname” : ” value”}

By placing this syntax inside a string a developer can quickly convert the string into an object using the

JavaScript eval function. The main advantage of using JSON is that it is easy to represent data in a structured

human readable way as a string and also quickly convert it to a native JavaScript object instead of parsing the

string which is required with XML.

Note: For more information about JSON visit www.json.org.

The NPR podcast application represents each favorite podcast channel as an object in an array of objects. Each

object has a title and an xmlUrl property.

podcast_favorites[0] = {title:title,xmlUrl:xmlUrl};

To save the array in the WRT preference variable, the NPR application converts the array into a JSON

formatted string. Below is an example of the JSON string formatting for a podcast favorites list. This example

consists of two podcast channel objects each with a title and a xmlUrl property.

'[' +
 '{“title”:"NPR: In Character",
 “xmlUrl”:"http://www.npr.org/rss/podcast.php?id =17914370"},' +
 '{“title”:"An Evening With...",
 “xmlUrl”:”http://www.npr.org/rss/podcast.php?id =510189”}
']';

The following outline explains the formatting purpose of each character in the JSON string.

[<- left bracket starts the array
 ‘{ <- single quote indicates first element in array, curly brace indicates object type
 “title” <- object property named title
 : <- colon assigns value to the property
 “NPR: In Character” <- quotes indicate string value of the title property
 , <- comma delimits properties
 “xmlUrl” <- name of next property, xmlUrl
 : <- colon assigns value to the property
 “http://www.npr.org/rss/podcast.php?id =17914370” <- string value xmlUrl property
 }’ <- curly brace indicates end of object, single quote is end of first array element
 , <- comma delimits items in array

Nokia s60 WRT 1.0 Podcast Application 31

Forum.Nokia.com

 '{<- single quote indicates 2nd element in array, curly brace indicates object type
 “title” <- object property named title
 : <- colon assigns value to the property
 “An Evening With...” <- quotes indicate string value of the title property
 , <- comma delimits properties
 “xmlUrl” <- name of next property, xmlUrl
 : <- colon assigns value to the property
 “http://www.npr.org/rss/podcast.php?id =510189” <- string value xmlUrl property
 }’ <- curly brace indicates end of object, single quote is end of 2nd array element
] <- right bracket is end of array

11.2 Saving favorite channels as a JSON formatted string

When a user saves a podcast channel as a favorite podcast, the NPR podcast application first retrieves the current

favorites list as a JSON formatted string from a WRT preference, and converts the JSON string into a

JavaScript array. Then the application adds the user selected channel to the array, converts the array

back into a JSON formatted string and saves the string back into the WRT preference variable. At this

point you should review the code for the savePodcastAsFavorite function from the manage_favorites.js file

near line 73.

The first block of code in the savePodcastAsFavorite function determines the currently selected podcast

channel and retrieves the title and RSS feed URL from the corresponding PODCAST_CATEGORIES object.

var selectedCategory = categoryView .getSelectedControl().id ;
var selectedChannel = channelView.getSelectedControl().id ;

The selectedCategory and the selectedChannel variables represent the currently selected podcast

category and channel.

// get values to save from the currently selected channel
var selected_channel = PODCAST_CATEGORIES
[selectedCategory].channels[selectedChannel];
var title = selected_channel.title; // get the selected episode title
var xmlUrl = selected_channel.xmlurl; // get the selected episode URL

The savePodcastAsFavorite function uses these two values to look up the object for the channel in the

PODCAST_CATEGORIES object and store the corresponding title and RSS feed URL in variables.

Next the savePodcastAsFavorite function calls the getFavoritesAsObject function which retrieves

the JSON string for the currently saved favorites from a WRT preference and converts it to a

JavaScript object, see section 11.3.

// using prototype.js json functions
var podcast_favorites = getFavoritesAsObject(); // get favorites as a
JavaScript object

The getFavoritesAsObject returns an array of objects representing the favorite podcast channels and

assigns this to the podcast_favorites array.

In the next block of code the savePodcastAsFavorite function calls the isPodcastSaved function to

determine whether the current channel is already saved. The isPodcastSaved function compares the title of the

channel the user wants to save to those already saved in the favorites list and if there is a match then the function
returns true. If the channel is already saved then the code alerts the user using a WRTKit notification, then exits the

savePodcastAsFavorite function to avoid duplicating an already saved channel in the favorites list on the

home screen.

// check that the podcast is not already saved
if(isPodcastSaved(title,podcast_favorites) == true){
 // show message that this podcast is already saved.

Nokia s60 WRT 1.0 Podcast Application 32

Forum.Nokia.com

 uiManager.showNotification(1000,"info","You have already saved this
as a favorite.",-1);
 return; // exit function to avoid saving a copy of this podcast
}

If the channel is not yet saved then the function adds the channel as an object to the podcast_favorites

array.

// otherwise not yet saved, save new favorite title and URL into the
// JavaScript object
if(podcast_favorites.length == 0){ // no previously stored favorites
 // store this favorite as the first in the array
 podcast_favorites[0] = {title:title,xmlUrl:xmlUrl};
} else { // previously stored favorites
 // append this favorite channel to the array
 podcast_favorites.push({title:title,xmlUrl:xmlUrl});
}

If there are no favorites in the favorites list, then set the current channel as the first in the favorites list. Otherwise the

function uses the Array.push method to append the channel to the favorites list. Note that the channel is an

object with a title and xmlUrl properties.

Next the savePodcastAsFavorite function uses the prototype.js Object.toJSON method to convert the

updated podcast_favorites array to a JSON formatted string and stores the string in the

favorites_json variable.

// resave json string in WRT pref
// using prototype.js json functions
// convert object to a string
var favorites_json = Object.toJSON(podcast_favorites);
// resave the json string into the WRT pref
saveFavoritesPref(favorites_json);

The saveFavoritesPref function the saves the JSON string in a WRT WRT preference named

"favorites_json" and saves the time stamp in the FAVORITES_LAST_UPDATE global variable for use in

building the favorites list on the home screen.

11.3 Converting the JSON formatted string to an object

When the user views the home screen, the NPR podcast application retrieves the JSON string from the WRT

preference named “favorite_json” and uses the prototype.js evalJSON method to convert the

string into an array to build the favorites menu list. At this point you should review the

getFavoritesAsObject and getFavoritesPref functions from the manage_favorites.js near the

beginning of the code.

// convert json formatted string into JavaScript object
// using prototype.js function
function getFavoritesAsObject(){
 // convert the json string in WRT pref into a JavaScript object
 // get the json string from the WRT pref
 var favorites_json = getFavoritesPref();

The getFavoritesAsObject function calls getFavoritesPref function to get the JSON formatted string

stored in the WRT preference. The getFavoritesAsObject function stores the value from the WRT

preference in the variable named favorites_json .

 if(favorites_json != null){ // favorites already exist
 // using prototype.js json functions

Nokia s60 WRT 1.0 Podcast Application 33

Forum.Nokia.com

 // convert json string into JavaScript object, return object
 return favorites_json.evalJSON(true);

The function then calls the prototype.js evalJSON method to convert the string in favorites_json to an array and returns

this array. The showStartupView function described starting in section 5.2 uses the array passed from the

getFavoritesAsObject function to build the favorites menu for the home screen.

Note: When the optional argument for evalJSON is set to true, the string is checked for possible malicious

attempts and eval is not called if one is detected.

If the value of favorites_json is null then the WRT preference is empty and there are no channels yet saved

as favorites. In this case the getFavoritesAsObject function returns an empty array.

 } else {
 // return new array if no podcast favorites saved
 return new Array();
 }
}

The getFavoritesPref function returns the JSON formatted string stored in the WRT preference

named “favorite_json”. If this WRT preference is empty or undefined the function returns null.

// attempt to get json formatted string from pref
function getFavoritesPref(){
 // attempt to get list of subscribed feeds
 if(window.widget){ // WRT environment
 // returns undefined if WRT preference is not yet set
 var pref = widget.preferenceForKey("favorites_json");
 // set pref to null for undefined or ""
 if(pref == "" || typeof pref == "undefined"){pref = null};
 return pref;
 }
}

12 Other features of the NPR podcast application

The focus of this article is on loading data and sound, saving podcast channels and exploring WRTKit user interface
management. However, there are a few other features of the application which may be of interest. In this section I
briefly describe other aspects of the application.

12.1 Removing favorites

In addition to the functions for saving podcast favorites there is also a feature for removing favorites from the list. You
can review how the manage favorites feature works by looking at the code in the application.js starting near line 517.

showManageFavoritesView – This function displays the manageFavoritesView and initiates building

the interface to remove favorites.

buildFavSelectionMenu – This function builds a menu for selecting the favorites for removal. The menu

consists of checkbox items using the WRTKit SelectionList class, so a user can select one or more favorites for

removal.

deleteSelectedFavorites – This function executes when the user selects the “Delete Selected Favorites”
button on the manage favorites screen. It converts the existing favorites list from a JSON string into an array,

removes the selected channels from the array using the Array.splice method, converts the array back

into a JSON string and resaves the JSON string in the WRT preference.

Nokia s60 WRT 1.0 Podcast Application 34

Forum.Nokia.com

12.2 Setting up modal help

When a user selects help from the left softkey options menu or on the home screen, the application will show help and
instructions that are relevant to the current screen. You can review the functions for this feature in the application.js file
starting near line 592.

The showHelpView function determines the current view using the uiManager.getView method and uses a

switch case statement to display the appropriate help content for the currently selected screen. It also

dynamically assigns a function to the right softkey so that the user can return to the previous screen by selecting “Close
Help”.

12.3 Adjusting header line lengths for orientation

Some of the podcast channel titles can be too long for display as the header of the episode and episode details screen
on a device with a 240 x 320 resolution in portrait mode. This causes an undesirable line break in the header for these
screens. I set up code in the application to truncate long captions to prevent line breaks in portrait mode and restore the
full caption in landscape mode. You can review the code for this feature starting near line 678 of the application.js file.

To do this, I first extended the WRTKit ListView object to have a fullcaption property to store the original title

of the channel. When the user changes the phone’s orientation the browser executes the window.onresize

event which calls the resetCaptionLength function. If the current view is the episode or episode detail view

then the resetCaptionLength function passes the fullcaption of the current view to the

getShorterCaption function to truncate the line length of the header. The getShorterCaption function

sets the length of the caption for the episode and episode details screen based upon the number of allowed characters

configured in the CAPTION_LENGTH_240 and CAPTION_LENGTH_320 global variables.

12.4 Setting up a modal options menu

To make the application easier to use I set up code that dynamically changes the left softkey options menu to display
only those options that are relevant to the current screen and application context. You can review the code that
configures the options menu from the options_menu.js file found in the NPR podcast folder.

The init function configures the menu by assigning the menupaneOpen function to the onShow event of the

menu and calling the createOptionsMenu to populate the menu with all of the possible options. When the user

selects the left softkey the WRT environment executes the onShow event which calls the menupaneOpen function.

The menupaneOpen function determines the current view using the uiManager.getView method and

dynamically shows the relevant options for this view and hides the others. You can use the setDimmed method of the

menu object to show or hide a menu item in the left softkey options menu. Passing a value of true hides the menu

item, while a value of false shows the menu item.

menu.getMenuItemById(1).setDimmed(true); // hide this menu item

13 Conclusion

The NPR podcast application is an example of WRT platform that enables users to quickly access web based content
over the air, download and save this content to the phone gallery and save user generated data in between application
sessions. While WRT has a more limited feature set than platforms such as Java or C++, it offers enough capability to
support a wide variety of applications, and is especially idiomatic for web oriented content.

The Nokia WRT 1.0 platform should be of interest to web developers who want to use their existing skill set to create
mobile applications that integrates with the phone capabilities more than current browser based web applications.
Content owners wanting a mobile presence should also consider this technology because it offers users a branded
application with quick access to content by launching from an icon, and a customized experience by running in full
screen with deeper phone integration compared to a mobile web site.

Nokia s60 WRT 1.0 Podcast Application 35

Forum.Nokia.com

About the author

Hayden Porter, the author of this document, has been developing web sites professionally since 1995 and has a special
interest in developing multimedia content for mobile devices. He has written extensively on the subject of developing
mobile content including white papers for leading mobile device manufacturers and articles for publications such as
Electronic Musician Magazine, Music Education Technology Magazine, and DevX.com. For more information, see
www.aviarts.com.

Nokia s60 WRT 1.0 Podcast Application 36

Forum.Nokia.com

Evaluate this resource

Please spare a moment to help us improve documentation quality and recognize the resources you find most valuable,
by rating this resource.

*** This chapter is always the last chapter of the document. If the document has an appendix, remove the numbering
from the heading of this chapter, as done here. Before publication, complete the survey link by adding in the ID part of
the URI generated by the metadata editor. ***

http://www.forum.nokia.com/main/1%2C%2C90%2C00.html?surveyId=

